Cargando…
Joint estimation of multiple dependent Gaussian graphical models with applications to mouse genomics
Gaussian graphical models are widely used to represent conditional dependencies among random variables. In this paper, we propose a novel estimator for data arising from a group of Gaussian graphical models that are themselves dependent. A motivating example is that of modelling gene expression coll...
Autores principales: | Xie, Yuying, Liu, Yufeng, Valdar, William |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5640885/ https://www.ncbi.nlm.nih.gov/pubmed/29038606 http://dx.doi.org/10.1093/biomet/asw035 |
Ejemplares similares
-
Joint conditional Gaussian graphical models with multiple sources of genomic data
por: Chun, Hyonho, et al.
Publicado: (2013) -
Joint Microbial and Metabolomic Network Estimation with the Censored Gaussian Graphical Model
por: Ma, Jing
Publicado: (2020) -
Penalized estimation of the Gaussian graphical model from data with replicates
por: van Wieringen, Wessel N., et al.
Publicado: (2021) -
Bayesian Covariate-Dependent Gaussian Graphical Models with Varying Structure
por: Ni, Yang, et al.
Publicado: (2022) -
Regularized estimation of large-scale gene association networks using graphical Gaussian models
por: Krämer, Nicole, et al.
Publicado: (2009)