Cargando…
Detecting spikes of wheat plants using neural networks with Laws texture energy
BACKGROUND: The spike of a cereal plant is the grain-bearing organ whose physical characteristics are proxy measures of grain yield. The ability to detect and characterise spikes from 2D images of cereal plants, such as wheat, therefore provides vital information on tiller number and yield potential...
Autores principales: | Qiongyan, Li, Cai, Jinhai, Berger, Bettina, Okamoto, Mamoru, Miklavcic, Stanley J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5640952/ https://www.ncbi.nlm.nih.gov/pubmed/29046709 http://dx.doi.org/10.1186/s13007-017-0231-1 |
Ejemplares similares
-
Detection and analysis of wheat spikes using Convolutional Neural Networks
por: Hasan, Md Mehedi, et al.
Publicado: (2018) -
Segmentation and counting of wheat spike grains based on deep learning and textural feature
por: Xu, Xin, et al.
Publicado: (2023) -
Correction to: Detection and analysis of wheat spikes using Convolutional Neural Networks
por: Hasan, Md Mehedi, et al.
Publicado: (2019) -
Quantifying the Onset and Progression of Plant Senescence by Color Image Analysis for High Throughput Applications
por: Cai, Jinhai, et al.
Publicado: (2016) -
Estimation of vegetation indices for high-throughput phenotyping of wheat using aerial imaging
por: Khan, Zohaib, et al.
Publicado: (2018)