Cargando…

Identification of a novel YAP–14-3-3ζ negative feedback loop in gastric cancer

Growing evidence indicates that 14-3-3ζ and yes-associated protein (YAP) substantially promote tumorigenesis and tumor development. However, the regulatory mechanism underlying these two proteins remains unknown. Herein, we report a new regulatory role of 14-3-3ζ in the phosphorylation of YAP and th...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Bin, Gong, Aihua, Shi, Hui, Bie, Qingli, Liang, Zhaofeng, Wu, Peipei, Mao, Fei, Qian, Hui, Xu, Wenrong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5641098/
https://www.ncbi.nlm.nih.gov/pubmed/29069755
http://dx.doi.org/10.18632/oncotarget.18011
Descripción
Sumario:Growing evidence indicates that 14-3-3ζ and yes-associated protein (YAP) substantially promote tumorigenesis and tumor development. However, the regulatory mechanism underlying these two proteins remains unknown. Herein, we report a new regulatory role of 14-3-3ζ in the phosphorylation of YAP and the feedback inhibition of 14-3-3ζ by YAP. YAP and 14-3-3ζ expression exhibited a negative correlation in gastric cancer (GC) tissues. Moreover, patients with higher YAP and lower 14-3-3ζ expression had poor prognoses. Studies have revealed that 14-3-3ζ promotes cytoplasmic retention and suppresses the transcriptional activity of YAP by inducing its phosphorylation. Furthermore, we observed that the overexpression of YAP significantly reduced the expression of 14-3-3ζ by inducing its ubiquitination. YAP, 14-3-3ζ, and mouse double minute 2 homolog (MDM2) were colocalized, and the knockdown of MDM2 by siRNA attenuated the YAP-induced decrease of 14-3-3ζ. The binding of 14-3-3ζ and MDM2 was also restrained when the expression of YAP was interfered. Our results indicated the presence of a 14-3-3ζ–YAP negative regulatory feedback loop, which has a crucial role in cell proliferation and survival and is a potential target for the clinical treatment of GC.