Cargando…
Predicting genomic selection efficiency to optimize calibration set and to assess prediction accuracy in highly structured populations
KEY MESSAGE: We propose a criterion to predict genomic selection efficiency for structured populations. This criterion is useful to define optimal calibration set and to estimate prediction reliability for multiparental populations. ABSTRACT: Genomic selection refers to the use of genotypic informat...
Autores principales: | Rincent, R., Charcosset, A., Moreau, L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5641287/ https://www.ncbi.nlm.nih.gov/pubmed/28795202 http://dx.doi.org/10.1007/s00122-017-2956-7 |
Ejemplares similares
-
Training set optimization of genomic prediction by means of EthAcc
por: Mangin, Brigitte, et al.
Publicado: (2019) -
Training set optimization under population structure in genomic selection
por: Isidro, Julio, et al.
Publicado: (2014) -
Optimising Genomic Selection in Wheat: Effect of Marker Density, Population Size and Population Structure on Prediction Accuracy
por: Norman, Adam, et al.
Publicado: (2018) -
Genomic prediction for grain yield and micro-environmental sensitivity in winter wheat
por: Raffo, Miguel A., et al.
Publicado: (2023) -
Accuracy of genotype imputation based on random and selected reference sets in purebred and crossbred sheep populations and its effect on accuracy of genomic prediction
por: Moghaddar, Nasir, et al.
Publicado: (2015)