Cargando…
Training Deep Convolutional Neural Networks with Resistive Cross-Point Devices
In a previous work we have detailed the requirements for obtaining maximal deep learning performance benefit by implementing fully connected deep neural networks (DNN) in the form of arrays of resistive devices. Here we extend the concept of Resistive Processing Unit (RPU) devices to convolutional n...
Autores principales: | Gokmen, Tayfun, Onen, Murat, Haensch, Wilfried |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5641314/ https://www.ncbi.nlm.nih.gov/pubmed/29066942 http://dx.doi.org/10.3389/fnins.2017.00538 |
Ejemplares similares
-
Training LSTM Networks With Resistive Cross-Point Devices
por: Gokmen, Tayfun, et al.
Publicado: (2018) -
Algorithm for Training Neural Networks on Resistive Device Arrays
por: Gokmen, Tayfun, et al.
Publicado: (2020) -
Acceleration of Deep Neural Network Training with Resistive Cross-Point Devices: Design Considerations
por: Gokmen, Tayfun, et al.
Publicado: (2016) -
RAPA-ConvNets: Modified Convolutional Networks for Accelerated Training on Architectures With Analog Arrays
por: Rasch, Malte J., et al.
Publicado: (2019) -
Neural Network Training With Asymmetric Crosspoint Elements
por: Onen, Murat, et al.
Publicado: (2022)