Cargando…

Neonatal pancreatic pericytes support β-cell proliferation

OBJECTIVE: The maintenance and expansion of β-cell mass rely on their proliferation, which reaches its peak in the neonatal stage. β-cell proliferation was found to rely on cells of the islet microenvironment. We hypothesized that pericytes, which are components of the islet vasculature, support neo...

Descripción completa

Detalles Bibliográficos
Autores principales: Epshtein, Alona, Rachi, Eleonor, Sakhneny, Lina, Mizrachi, Shani, Baer, Daria, Landsman, Limor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5641631/
https://www.ncbi.nlm.nih.gov/pubmed/29031732
http://dx.doi.org/10.1016/j.molmet.2017.07.010
Descripción
Sumario:OBJECTIVE: The maintenance and expansion of β-cell mass rely on their proliferation, which reaches its peak in the neonatal stage. β-cell proliferation was found to rely on cells of the islet microenvironment. We hypothesized that pericytes, which are components of the islet vasculature, support neonatal β-cell proliferation. METHODS: To test our hypothesis, we combined in vivo and in vitro approaches. Briefly, we used a Diphtheria toxin-based transgenic mouse system to specifically deplete neonatal pancreatic pericytes in vivo. We further cultured neonatal pericytes isolated from the neonatal pancreas and combined the use of a β-cell line and primary cultured mouse β-cells. RESULTS: Our findings indicate that neonatal pancreatic pericytes are required and sufficient for β-cell proliferation. We observed impaired proliferation of neonatal β-cells upon in vivo depletion of pancreatic pericytes. Furthermore, exposure to pericyte-conditioned medium stimulated proliferation in cultured β-cells. CONCLUSIONS: This study introduces pancreatic pericytes as regulators of neonatal β-cell proliferation. In addition to advancing current understanding of the physiological β-cell replication process, these findings could facilitate the development of protocols aimed at expending these cells as a potential cure for diabetes.