Cargando…
Association of urinary citrate excretion, pH, and net gastrointestinal alkali absorption with diet, diuretic use, and blood glucose concentration
Urinary citrate (Ucit) protects against urinary stone formation. Acid base status and diet influence Ucit. However, the effect of demographics, diet, and glucose metabolism on Ucit excretion, urinary pH (U‐pH) and net gastrointestinal alkali absorption (NAA) are not known. Twenty‐four hour urine sam...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5641929/ https://www.ncbi.nlm.nih.gov/pubmed/29038354 http://dx.doi.org/10.14814/phy2.13411 |
_version_ | 1783271288409686016 |
---|---|
author | Perinpam, Majuran Ware, Erin B. Smith, Jennifer A. Turner, Stephen T. Kardia, Sharon L. R. Lieske, John C. |
author_facet | Perinpam, Majuran Ware, Erin B. Smith, Jennifer A. Turner, Stephen T. Kardia, Sharon L. R. Lieske, John C. |
author_sort | Perinpam, Majuran |
collection | PubMed |
description | Urinary citrate (Ucit) protects against urinary stone formation. Acid base status and diet influence Ucit. However, the effect of demographics, diet, and glucose metabolism on Ucit excretion, urinary pH (U‐pH) and net gastrointestinal alkali absorption (NAA) are not known. Twenty‐four hour urine samples, blood glucose, creatinine, and cystatin C were obtained from non‐Hispanic white sibships in Rochester, MN (n = 446; 64.5 ± 9 years; 58% female). Diet was assessed by a food frequency questionnaire. The impact of blood glucose, demographics and dietary elements on Ucit excretion, U‐pH, and NAA were evaluated in bivariate and multivariable models and interaction models that included age, sex, and weight. NAA significantly associated with Ucit and U‐pH. In multivariate models Ucit increased with age, weight, eGFR(C) (ys), and blood glucose, but decreased with loop diuretic and thiazide use. U‐pH decreased with serum creatinine, blood glucose, and dietary protein but increased with dietary potassium. NAA was higher in males and increased with age, weight, eGFR(C) (ys) and dietary potassium. Significant interactions were observed for Ucit excretion with age and blood glucose, weight and eGFR(C) (ys,) and sex and thiazide use. Blood glucose had a significant and independent effect on U‐pH and also Ucit. This study provides the first evidence that blood glucose could influence urinary stone risk independent of urinary pH, potentially providing new insight into the association of obesity and urinary stone disease. |
format | Online Article Text |
id | pubmed-5641929 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-56419292017-10-18 Association of urinary citrate excretion, pH, and net gastrointestinal alkali absorption with diet, diuretic use, and blood glucose concentration Perinpam, Majuran Ware, Erin B. Smith, Jennifer A. Turner, Stephen T. Kardia, Sharon L. R. Lieske, John C. Physiol Rep Original Research Urinary citrate (Ucit) protects against urinary stone formation. Acid base status and diet influence Ucit. However, the effect of demographics, diet, and glucose metabolism on Ucit excretion, urinary pH (U‐pH) and net gastrointestinal alkali absorption (NAA) are not known. Twenty‐four hour urine samples, blood glucose, creatinine, and cystatin C were obtained from non‐Hispanic white sibships in Rochester, MN (n = 446; 64.5 ± 9 years; 58% female). Diet was assessed by a food frequency questionnaire. The impact of blood glucose, demographics and dietary elements on Ucit excretion, U‐pH, and NAA were evaluated in bivariate and multivariable models and interaction models that included age, sex, and weight. NAA significantly associated with Ucit and U‐pH. In multivariate models Ucit increased with age, weight, eGFR(C) (ys), and blood glucose, but decreased with loop diuretic and thiazide use. U‐pH decreased with serum creatinine, blood glucose, and dietary protein but increased with dietary potassium. NAA was higher in males and increased with age, weight, eGFR(C) (ys) and dietary potassium. Significant interactions were observed for Ucit excretion with age and blood glucose, weight and eGFR(C) (ys,) and sex and thiazide use. Blood glucose had a significant and independent effect on U‐pH and also Ucit. This study provides the first evidence that blood glucose could influence urinary stone risk independent of urinary pH, potentially providing new insight into the association of obesity and urinary stone disease. John Wiley and Sons Inc. 2017-10-16 /pmc/articles/PMC5641929/ /pubmed/29038354 http://dx.doi.org/10.14814/phy2.13411 Text en © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Perinpam, Majuran Ware, Erin B. Smith, Jennifer A. Turner, Stephen T. Kardia, Sharon L. R. Lieske, John C. Association of urinary citrate excretion, pH, and net gastrointestinal alkali absorption with diet, diuretic use, and blood glucose concentration |
title | Association of urinary citrate excretion, pH, and net gastrointestinal alkali absorption with diet, diuretic use, and blood glucose concentration |
title_full | Association of urinary citrate excretion, pH, and net gastrointestinal alkali absorption with diet, diuretic use, and blood glucose concentration |
title_fullStr | Association of urinary citrate excretion, pH, and net gastrointestinal alkali absorption with diet, diuretic use, and blood glucose concentration |
title_full_unstemmed | Association of urinary citrate excretion, pH, and net gastrointestinal alkali absorption with diet, diuretic use, and blood glucose concentration |
title_short | Association of urinary citrate excretion, pH, and net gastrointestinal alkali absorption with diet, diuretic use, and blood glucose concentration |
title_sort | association of urinary citrate excretion, ph, and net gastrointestinal alkali absorption with diet, diuretic use, and blood glucose concentration |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5641929/ https://www.ncbi.nlm.nih.gov/pubmed/29038354 http://dx.doi.org/10.14814/phy2.13411 |
work_keys_str_mv | AT perinpammajuran associationofurinarycitrateexcretionphandnetgastrointestinalalkaliabsorptionwithdietdiureticuseandbloodglucoseconcentration AT wareerinb associationofurinarycitrateexcretionphandnetgastrointestinalalkaliabsorptionwithdietdiureticuseandbloodglucoseconcentration AT smithjennifera associationofurinarycitrateexcretionphandnetgastrointestinalalkaliabsorptionwithdietdiureticuseandbloodglucoseconcentration AT turnerstephent associationofurinarycitrateexcretionphandnetgastrointestinalalkaliabsorptionwithdietdiureticuseandbloodglucoseconcentration AT kardiasharonlr associationofurinarycitrateexcretionphandnetgastrointestinalalkaliabsorptionwithdietdiureticuseandbloodglucoseconcentration AT lieskejohnc associationofurinarycitrateexcretionphandnetgastrointestinalalkaliabsorptionwithdietdiureticuseandbloodglucoseconcentration |