Cargando…

Crystal Phase Quantum Well Emission with Digital Control

[Image: see text] One of the major challenges in the growth of quantum well and quantum dot heterostructures is the realization of atomically sharp interfaces. Nanowires provide a new opportunity to engineer the band structure as they facilitate the controlled switching of the crystal structure betw...

Descripción completa

Detalles Bibliográficos
Autores principales: Assali, S., Lähnemann, J., Vu, T. T. T., Jöns, K. D., Gagliano, L., Verheijen, M. A., Akopian, N., Bakkers, E. P. A. M., Haverkort, J. E. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2017
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5642001/
https://www.ncbi.nlm.nih.gov/pubmed/28892396
http://dx.doi.org/10.1021/acs.nanolett.7b02489
_version_ 1783271297703215104
author Assali, S.
Lähnemann, J.
Vu, T. T. T.
Jöns, K. D.
Gagliano, L.
Verheijen, M. A.
Akopian, N.
Bakkers, E. P. A. M.
Haverkort, J. E. M.
author_facet Assali, S.
Lähnemann, J.
Vu, T. T. T.
Jöns, K. D.
Gagliano, L.
Verheijen, M. A.
Akopian, N.
Bakkers, E. P. A. M.
Haverkort, J. E. M.
author_sort Assali, S.
collection PubMed
description [Image: see text] One of the major challenges in the growth of quantum well and quantum dot heterostructures is the realization of atomically sharp interfaces. Nanowires provide a new opportunity to engineer the band structure as they facilitate the controlled switching of the crystal structure between the zinc-blende (ZB) and wurtzite (WZ) phases. Such a crystal phase switching results in the formation of crystal phase quantum wells (CPQWs) and quantum dots (CPQDs). For GaP CPQWs, the inherent electric fields due to the discontinuity of the spontaneous polarization at the WZ/ZB junctions lead to the confinement of both types of charge carriers at the opposite interfaces of the WZ/ZB/WZ structure. This confinement leads to a novel type of transition across a ZB flat plate barrier. Here, we show digital tuning of the visible emission of WZ/ZB/WZ CPQWs in a GaP nanowire by changing the thickness of the ZB barrier. The energy spacing between the sharp emission lines is uniform and is defined by the addition of single ZB monolayers. The controlled growth of identical quantum wells with atomically flat interfaces at predefined positions featuring digitally tunable discrete emission energies may provide a new route to further advance entangled photons in solid state quantum systems.
format Online
Article
Text
id pubmed-5642001
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-56420012017-10-17 Crystal Phase Quantum Well Emission with Digital Control Assali, S. Lähnemann, J. Vu, T. T. T. Jöns, K. D. Gagliano, L. Verheijen, M. A. Akopian, N. Bakkers, E. P. A. M. Haverkort, J. E. M. Nano Lett [Image: see text] One of the major challenges in the growth of quantum well and quantum dot heterostructures is the realization of atomically sharp interfaces. Nanowires provide a new opportunity to engineer the band structure as they facilitate the controlled switching of the crystal structure between the zinc-blende (ZB) and wurtzite (WZ) phases. Such a crystal phase switching results in the formation of crystal phase quantum wells (CPQWs) and quantum dots (CPQDs). For GaP CPQWs, the inherent electric fields due to the discontinuity of the spontaneous polarization at the WZ/ZB junctions lead to the confinement of both types of charge carriers at the opposite interfaces of the WZ/ZB/WZ structure. This confinement leads to a novel type of transition across a ZB flat plate barrier. Here, we show digital tuning of the visible emission of WZ/ZB/WZ CPQWs in a GaP nanowire by changing the thickness of the ZB barrier. The energy spacing between the sharp emission lines is uniform and is defined by the addition of single ZB monolayers. The controlled growth of identical quantum wells with atomically flat interfaces at predefined positions featuring digitally tunable discrete emission energies may provide a new route to further advance entangled photons in solid state quantum systems. American Chemical Society 2017-09-11 2017-10-11 /pmc/articles/PMC5642001/ /pubmed/28892396 http://dx.doi.org/10.1021/acs.nanolett.7b02489 Text en Copyright © 2017 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.
spellingShingle Assali, S.
Lähnemann, J.
Vu, T. T. T.
Jöns, K. D.
Gagliano, L.
Verheijen, M. A.
Akopian, N.
Bakkers, E. P. A. M.
Haverkort, J. E. M.
Crystal Phase Quantum Well Emission with Digital Control
title Crystal Phase Quantum Well Emission with Digital Control
title_full Crystal Phase Quantum Well Emission with Digital Control
title_fullStr Crystal Phase Quantum Well Emission with Digital Control
title_full_unstemmed Crystal Phase Quantum Well Emission with Digital Control
title_short Crystal Phase Quantum Well Emission with Digital Control
title_sort crystal phase quantum well emission with digital control
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5642001/
https://www.ncbi.nlm.nih.gov/pubmed/28892396
http://dx.doi.org/10.1021/acs.nanolett.7b02489
work_keys_str_mv AT assalis crystalphasequantumwellemissionwithdigitalcontrol
AT lahnemannj crystalphasequantumwellemissionwithdigitalcontrol
AT vuttt crystalphasequantumwellemissionwithdigitalcontrol
AT jonskd crystalphasequantumwellemissionwithdigitalcontrol
AT gaglianol crystalphasequantumwellemissionwithdigitalcontrol
AT verheijenma crystalphasequantumwellemissionwithdigitalcontrol
AT akopiann crystalphasequantumwellemissionwithdigitalcontrol
AT bakkersepam crystalphasequantumwellemissionwithdigitalcontrol
AT haverkortjem crystalphasequantumwellemissionwithdigitalcontrol