Cargando…
Role of UHRF1 in de novo DNA methylation in oocytes and maintenance methylation in preimplantation embryos
The methylation of cytosine at CG sites in the mammalian genome is dynamically reprogrammed during gametogenesis and preimplantation development. It was previously shown that oocyte-derived DNMT1 (a maintenance methyltransferase) is essential for maintaining and propagating CG methylation at imprint...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5643148/ https://www.ncbi.nlm.nih.gov/pubmed/28976982 http://dx.doi.org/10.1371/journal.pgen.1007042 |
_version_ | 1783271479003054080 |
---|---|
author | Maenohara, Shoji Unoki, Motoko Toh, Hidehiro Ohishi, Hiroaki Sharif, Jafar Koseki, Haruhiko Sasaki, Hiroyuki |
author_facet | Maenohara, Shoji Unoki, Motoko Toh, Hidehiro Ohishi, Hiroaki Sharif, Jafar Koseki, Haruhiko Sasaki, Hiroyuki |
author_sort | Maenohara, Shoji |
collection | PubMed |
description | The methylation of cytosine at CG sites in the mammalian genome is dynamically reprogrammed during gametogenesis and preimplantation development. It was previously shown that oocyte-derived DNMT1 (a maintenance methyltransferase) is essential for maintaining and propagating CG methylation at imprinting control regions in preimplantation embryos. In mammalian somatic cells, hemimethylated-CG-binding protein UHRF1 plays a critical role in maintaining CG methylation by recruiting DNMT1 to hemimethylated CG sites. However, the role of UHRF1 in oogenesis and preimplantation development is unknown. In the present study, we show that UHRF1 is mainly, but not exclusively, localized in the cytoplasm of oocytes and preimplantation embryos. However, smaller amounts of UHRF1 existed in the nucleus, consistent with the expected role in DNA methylation. We then generated oocyte-specific Uhrf1 knockout (KO) mice and found that, although oogenesis was itself unaffected, a large proportion of the embryos derived from the KO oocytes died before reaching the blastocyst stage (a maternal effect). Whole genome bisulfite sequencing revealed that blastocysts derived from KO oocytes have a greatly reduced level of CG methylation, suggesting that maternal UHRF1 is essential for maintaining CG methylation, particularly at the imprinting control regions, in preimplantation embryos. Surprisingly, UHRF1 was also found to contribute to de novo CG and non-CG methylation during oocyte growth: in Uhrf1 KO oocytes, transcriptionally-inactive regions gained less methylation, while actively transcribed regions, including the imprinting control regions, were unaffected or only slightly affected. We also found that de novo methylation was defective during the late stage of oocyte growth. To the best of our knowledge, this is the first study to demonstrate the role of UHRF1 in de novo DNA methylation in vivo. Our study reveals multiple functions of UHRF1 during the global epigenetic reprogramming of oocytes and early embryos. |
format | Online Article Text |
id | pubmed-5643148 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-56431482017-10-30 Role of UHRF1 in de novo DNA methylation in oocytes and maintenance methylation in preimplantation embryos Maenohara, Shoji Unoki, Motoko Toh, Hidehiro Ohishi, Hiroaki Sharif, Jafar Koseki, Haruhiko Sasaki, Hiroyuki PLoS Genet Research Article The methylation of cytosine at CG sites in the mammalian genome is dynamically reprogrammed during gametogenesis and preimplantation development. It was previously shown that oocyte-derived DNMT1 (a maintenance methyltransferase) is essential for maintaining and propagating CG methylation at imprinting control regions in preimplantation embryos. In mammalian somatic cells, hemimethylated-CG-binding protein UHRF1 plays a critical role in maintaining CG methylation by recruiting DNMT1 to hemimethylated CG sites. However, the role of UHRF1 in oogenesis and preimplantation development is unknown. In the present study, we show that UHRF1 is mainly, but not exclusively, localized in the cytoplasm of oocytes and preimplantation embryos. However, smaller amounts of UHRF1 existed in the nucleus, consistent with the expected role in DNA methylation. We then generated oocyte-specific Uhrf1 knockout (KO) mice and found that, although oogenesis was itself unaffected, a large proportion of the embryos derived from the KO oocytes died before reaching the blastocyst stage (a maternal effect). Whole genome bisulfite sequencing revealed that blastocysts derived from KO oocytes have a greatly reduced level of CG methylation, suggesting that maternal UHRF1 is essential for maintaining CG methylation, particularly at the imprinting control regions, in preimplantation embryos. Surprisingly, UHRF1 was also found to contribute to de novo CG and non-CG methylation during oocyte growth: in Uhrf1 KO oocytes, transcriptionally-inactive regions gained less methylation, while actively transcribed regions, including the imprinting control regions, were unaffected or only slightly affected. We also found that de novo methylation was defective during the late stage of oocyte growth. To the best of our knowledge, this is the first study to demonstrate the role of UHRF1 in de novo DNA methylation in vivo. Our study reveals multiple functions of UHRF1 during the global epigenetic reprogramming of oocytes and early embryos. Public Library of Science 2017-10-04 /pmc/articles/PMC5643148/ /pubmed/28976982 http://dx.doi.org/10.1371/journal.pgen.1007042 Text en © 2017 Maenohara et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Maenohara, Shoji Unoki, Motoko Toh, Hidehiro Ohishi, Hiroaki Sharif, Jafar Koseki, Haruhiko Sasaki, Hiroyuki Role of UHRF1 in de novo DNA methylation in oocytes and maintenance methylation in preimplantation embryos |
title | Role of UHRF1 in de novo DNA methylation in oocytes and maintenance methylation in preimplantation embryos |
title_full | Role of UHRF1 in de novo DNA methylation in oocytes and maintenance methylation in preimplantation embryos |
title_fullStr | Role of UHRF1 in de novo DNA methylation in oocytes and maintenance methylation in preimplantation embryos |
title_full_unstemmed | Role of UHRF1 in de novo DNA methylation in oocytes and maintenance methylation in preimplantation embryos |
title_short | Role of UHRF1 in de novo DNA methylation in oocytes and maintenance methylation in preimplantation embryos |
title_sort | role of uhrf1 in de novo dna methylation in oocytes and maintenance methylation in preimplantation embryos |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5643148/ https://www.ncbi.nlm.nih.gov/pubmed/28976982 http://dx.doi.org/10.1371/journal.pgen.1007042 |
work_keys_str_mv | AT maenoharashoji roleofuhrf1indenovodnamethylationinoocytesandmaintenancemethylationinpreimplantationembryos AT unokimotoko roleofuhrf1indenovodnamethylationinoocytesandmaintenancemethylationinpreimplantationembryos AT tohhidehiro roleofuhrf1indenovodnamethylationinoocytesandmaintenancemethylationinpreimplantationembryos AT ohishihiroaki roleofuhrf1indenovodnamethylationinoocytesandmaintenancemethylationinpreimplantationembryos AT sharifjafar roleofuhrf1indenovodnamethylationinoocytesandmaintenancemethylationinpreimplantationembryos AT kosekiharuhiko roleofuhrf1indenovodnamethylationinoocytesandmaintenancemethylationinpreimplantationembryos AT sasakihiroyuki roleofuhrf1indenovodnamethylationinoocytesandmaintenancemethylationinpreimplantationembryos |