Cargando…

A structural model of flagellar filament switching across multiple bacterial species

The bacterial flagellar filament has long been studied to understand how a polymer composed of a single protein can switch between different supercoiled states with high cooperativity. Here we present near-atomic resolution cryo-EM structures for flagellar filaments from both Gram-positive Bacillus...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Fengbin, Burrage, Andrew M., Postel, Sandra, Clark, Reece E., Orlova, Albina, Sundberg, Eric J., Kearns, Daniel B., Egelman, Edward H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5643327/
https://www.ncbi.nlm.nih.gov/pubmed/29038601
http://dx.doi.org/10.1038/s41467-017-01075-5
_version_ 1783271506936070144
author Wang, Fengbin
Burrage, Andrew M.
Postel, Sandra
Clark, Reece E.
Orlova, Albina
Sundberg, Eric J.
Kearns, Daniel B.
Egelman, Edward H.
author_facet Wang, Fengbin
Burrage, Andrew M.
Postel, Sandra
Clark, Reece E.
Orlova, Albina
Sundberg, Eric J.
Kearns, Daniel B.
Egelman, Edward H.
author_sort Wang, Fengbin
collection PubMed
description The bacterial flagellar filament has long been studied to understand how a polymer composed of a single protein can switch between different supercoiled states with high cooperativity. Here we present near-atomic resolution cryo-EM structures for flagellar filaments from both Gram-positive Bacillus subtilis and Gram-negative Pseudomonas aeruginosa. Seven mutant flagellar filaments in B. subtilis and two in P. aeruginosa capture two different states of the filament. These reliable atomic models of both states reveal conserved molecular interactions in the interior of the filament among B. subtilis, P. aeruginosa and Salmonella enterica. Using the detailed information about the molecular interactions in two filament states, we successfully predict point mutations that shift the equilibrium between those two states. Further, we observe the dimerization of P. aeruginosa outer domains without any perturbation of the conserved interior of the filament. Our results give new insights into how the flagellin sequence has been “tuned” over evolution.
format Online
Article
Text
id pubmed-5643327
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-56433272017-10-18 A structural model of flagellar filament switching across multiple bacterial species Wang, Fengbin Burrage, Andrew M. Postel, Sandra Clark, Reece E. Orlova, Albina Sundberg, Eric J. Kearns, Daniel B. Egelman, Edward H. Nat Commun Article The bacterial flagellar filament has long been studied to understand how a polymer composed of a single protein can switch between different supercoiled states with high cooperativity. Here we present near-atomic resolution cryo-EM structures for flagellar filaments from both Gram-positive Bacillus subtilis and Gram-negative Pseudomonas aeruginosa. Seven mutant flagellar filaments in B. subtilis and two in P. aeruginosa capture two different states of the filament. These reliable atomic models of both states reveal conserved molecular interactions in the interior of the filament among B. subtilis, P. aeruginosa and Salmonella enterica. Using the detailed information about the molecular interactions in two filament states, we successfully predict point mutations that shift the equilibrium between those two states. Further, we observe the dimerization of P. aeruginosa outer domains without any perturbation of the conserved interior of the filament. Our results give new insights into how the flagellin sequence has been “tuned” over evolution. Nature Publishing Group UK 2017-10-16 /pmc/articles/PMC5643327/ /pubmed/29038601 http://dx.doi.org/10.1038/s41467-017-01075-5 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Wang, Fengbin
Burrage, Andrew M.
Postel, Sandra
Clark, Reece E.
Orlova, Albina
Sundberg, Eric J.
Kearns, Daniel B.
Egelman, Edward H.
A structural model of flagellar filament switching across multiple bacterial species
title A structural model of flagellar filament switching across multiple bacterial species
title_full A structural model of flagellar filament switching across multiple bacterial species
title_fullStr A structural model of flagellar filament switching across multiple bacterial species
title_full_unstemmed A structural model of flagellar filament switching across multiple bacterial species
title_short A structural model of flagellar filament switching across multiple bacterial species
title_sort structural model of flagellar filament switching across multiple bacterial species
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5643327/
https://www.ncbi.nlm.nih.gov/pubmed/29038601
http://dx.doi.org/10.1038/s41467-017-01075-5
work_keys_str_mv AT wangfengbin astructuralmodelofflagellarfilamentswitchingacrossmultiplebacterialspecies
AT burrageandrewm astructuralmodelofflagellarfilamentswitchingacrossmultiplebacterialspecies
AT postelsandra astructuralmodelofflagellarfilamentswitchingacrossmultiplebacterialspecies
AT clarkreecee astructuralmodelofflagellarfilamentswitchingacrossmultiplebacterialspecies
AT orlovaalbina astructuralmodelofflagellarfilamentswitchingacrossmultiplebacterialspecies
AT sundbergericj astructuralmodelofflagellarfilamentswitchingacrossmultiplebacterialspecies
AT kearnsdanielb astructuralmodelofflagellarfilamentswitchingacrossmultiplebacterialspecies
AT egelmanedwardh astructuralmodelofflagellarfilamentswitchingacrossmultiplebacterialspecies
AT wangfengbin structuralmodelofflagellarfilamentswitchingacrossmultiplebacterialspecies
AT burrageandrewm structuralmodelofflagellarfilamentswitchingacrossmultiplebacterialspecies
AT postelsandra structuralmodelofflagellarfilamentswitchingacrossmultiplebacterialspecies
AT clarkreecee structuralmodelofflagellarfilamentswitchingacrossmultiplebacterialspecies
AT orlovaalbina structuralmodelofflagellarfilamentswitchingacrossmultiplebacterialspecies
AT sundbergericj structuralmodelofflagellarfilamentswitchingacrossmultiplebacterialspecies
AT kearnsdanielb structuralmodelofflagellarfilamentswitchingacrossmultiplebacterialspecies
AT egelmanedwardh structuralmodelofflagellarfilamentswitchingacrossmultiplebacterialspecies