Cargando…
A structural model of flagellar filament switching across multiple bacterial species
The bacterial flagellar filament has long been studied to understand how a polymer composed of a single protein can switch between different supercoiled states with high cooperativity. Here we present near-atomic resolution cryo-EM structures for flagellar filaments from both Gram-positive Bacillus...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5643327/ https://www.ncbi.nlm.nih.gov/pubmed/29038601 http://dx.doi.org/10.1038/s41467-017-01075-5 |
_version_ | 1783271506936070144 |
---|---|
author | Wang, Fengbin Burrage, Andrew M. Postel, Sandra Clark, Reece E. Orlova, Albina Sundberg, Eric J. Kearns, Daniel B. Egelman, Edward H. |
author_facet | Wang, Fengbin Burrage, Andrew M. Postel, Sandra Clark, Reece E. Orlova, Albina Sundberg, Eric J. Kearns, Daniel B. Egelman, Edward H. |
author_sort | Wang, Fengbin |
collection | PubMed |
description | The bacterial flagellar filament has long been studied to understand how a polymer composed of a single protein can switch between different supercoiled states with high cooperativity. Here we present near-atomic resolution cryo-EM structures for flagellar filaments from both Gram-positive Bacillus subtilis and Gram-negative Pseudomonas aeruginosa. Seven mutant flagellar filaments in B. subtilis and two in P. aeruginosa capture two different states of the filament. These reliable atomic models of both states reveal conserved molecular interactions in the interior of the filament among B. subtilis, P. aeruginosa and Salmonella enterica. Using the detailed information about the molecular interactions in two filament states, we successfully predict point mutations that shift the equilibrium between those two states. Further, we observe the dimerization of P. aeruginosa outer domains without any perturbation of the conserved interior of the filament. Our results give new insights into how the flagellin sequence has been “tuned” over evolution. |
format | Online Article Text |
id | pubmed-5643327 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-56433272017-10-18 A structural model of flagellar filament switching across multiple bacterial species Wang, Fengbin Burrage, Andrew M. Postel, Sandra Clark, Reece E. Orlova, Albina Sundberg, Eric J. Kearns, Daniel B. Egelman, Edward H. Nat Commun Article The bacterial flagellar filament has long been studied to understand how a polymer composed of a single protein can switch between different supercoiled states with high cooperativity. Here we present near-atomic resolution cryo-EM structures for flagellar filaments from both Gram-positive Bacillus subtilis and Gram-negative Pseudomonas aeruginosa. Seven mutant flagellar filaments in B. subtilis and two in P. aeruginosa capture two different states of the filament. These reliable atomic models of both states reveal conserved molecular interactions in the interior of the filament among B. subtilis, P. aeruginosa and Salmonella enterica. Using the detailed information about the molecular interactions in two filament states, we successfully predict point mutations that shift the equilibrium between those two states. Further, we observe the dimerization of P. aeruginosa outer domains without any perturbation of the conserved interior of the filament. Our results give new insights into how the flagellin sequence has been “tuned” over evolution. Nature Publishing Group UK 2017-10-16 /pmc/articles/PMC5643327/ /pubmed/29038601 http://dx.doi.org/10.1038/s41467-017-01075-5 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Wang, Fengbin Burrage, Andrew M. Postel, Sandra Clark, Reece E. Orlova, Albina Sundberg, Eric J. Kearns, Daniel B. Egelman, Edward H. A structural model of flagellar filament switching across multiple bacterial species |
title | A structural model of flagellar filament switching across multiple bacterial species |
title_full | A structural model of flagellar filament switching across multiple bacterial species |
title_fullStr | A structural model of flagellar filament switching across multiple bacterial species |
title_full_unstemmed | A structural model of flagellar filament switching across multiple bacterial species |
title_short | A structural model of flagellar filament switching across multiple bacterial species |
title_sort | structural model of flagellar filament switching across multiple bacterial species |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5643327/ https://www.ncbi.nlm.nih.gov/pubmed/29038601 http://dx.doi.org/10.1038/s41467-017-01075-5 |
work_keys_str_mv | AT wangfengbin astructuralmodelofflagellarfilamentswitchingacrossmultiplebacterialspecies AT burrageandrewm astructuralmodelofflagellarfilamentswitchingacrossmultiplebacterialspecies AT postelsandra astructuralmodelofflagellarfilamentswitchingacrossmultiplebacterialspecies AT clarkreecee astructuralmodelofflagellarfilamentswitchingacrossmultiplebacterialspecies AT orlovaalbina astructuralmodelofflagellarfilamentswitchingacrossmultiplebacterialspecies AT sundbergericj astructuralmodelofflagellarfilamentswitchingacrossmultiplebacterialspecies AT kearnsdanielb astructuralmodelofflagellarfilamentswitchingacrossmultiplebacterialspecies AT egelmanedwardh astructuralmodelofflagellarfilamentswitchingacrossmultiplebacterialspecies AT wangfengbin structuralmodelofflagellarfilamentswitchingacrossmultiplebacterialspecies AT burrageandrewm structuralmodelofflagellarfilamentswitchingacrossmultiplebacterialspecies AT postelsandra structuralmodelofflagellarfilamentswitchingacrossmultiplebacterialspecies AT clarkreecee structuralmodelofflagellarfilamentswitchingacrossmultiplebacterialspecies AT orlovaalbina structuralmodelofflagellarfilamentswitchingacrossmultiplebacterialspecies AT sundbergericj structuralmodelofflagellarfilamentswitchingacrossmultiplebacterialspecies AT kearnsdanielb structuralmodelofflagellarfilamentswitchingacrossmultiplebacterialspecies AT egelmanedwardh structuralmodelofflagellarfilamentswitchingacrossmultiplebacterialspecies |