Cargando…
A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling
Radiomics applies machine learning algorithms to quantitative imaging data to characterise the tumour phenotype and predict clinical outcome. For the development of radiomics risk models, a variety of different algorithms is available and it is not clear which one gives optimal results. Therefore, w...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5643429/ https://www.ncbi.nlm.nih.gov/pubmed/29038455 http://dx.doi.org/10.1038/s41598-017-13448-3 |
_version_ | 1783271530695753728 |
---|---|
author | Leger, Stefan Zwanenburg, Alex Pilz, Karoline Lohaus, Fabian Linge, Annett Zöphel, Klaus Kotzerke, Jörg Schreiber, Andreas Tinhofer, Inge Budach, Volker Sak, Ali Stuschke, Martin Balermpas, Panagiotis Rödel, Claus Ganswindt, Ute Belka, Claus Pigorsch, Steffi Combs, Stephanie E. Mönnich, David Zips, Daniel Krause, Mechthild Baumann, Michael Troost, Esther G. C. Löck, Steffen Richter, Christian |
author_facet | Leger, Stefan Zwanenburg, Alex Pilz, Karoline Lohaus, Fabian Linge, Annett Zöphel, Klaus Kotzerke, Jörg Schreiber, Andreas Tinhofer, Inge Budach, Volker Sak, Ali Stuschke, Martin Balermpas, Panagiotis Rödel, Claus Ganswindt, Ute Belka, Claus Pigorsch, Steffi Combs, Stephanie E. Mönnich, David Zips, Daniel Krause, Mechthild Baumann, Michael Troost, Esther G. C. Löck, Steffen Richter, Christian |
author_sort | Leger, Stefan |
collection | PubMed |
description | Radiomics applies machine learning algorithms to quantitative imaging data to characterise the tumour phenotype and predict clinical outcome. For the development of radiomics risk models, a variety of different algorithms is available and it is not clear which one gives optimal results. Therefore, we assessed the performance of 11 machine learning algorithms combined with 12 feature selection methods by the concordance index (C-Index), to predict loco-regional tumour control (LRC) and overall survival for patients with head and neck squamous cell carcinoma. The considered algorithms are able to deal with continuous time-to-event survival data. Feature selection and model building were performed on a multicentre cohort (213 patients) and validated using an independent cohort (80 patients). We found several combinations of machine learning algorithms and feature selection methods which achieve similar results, e.g., MSR-RF: C-Index = 0.71 and BT-COX: C-Index = 0.70 in combination with Spearman feature selection. Using the best performing models, patients were stratified into groups of low and high risk of recurrence. Significant differences in LRC were obtained between both groups on the validation cohort. Based on the presented analysis, we identified a subset of algorithms which should be considered in future radiomics studies to develop stable and clinically relevant predictive models for time-to-event endpoints. |
format | Online Article Text |
id | pubmed-5643429 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-56434292017-10-19 A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling Leger, Stefan Zwanenburg, Alex Pilz, Karoline Lohaus, Fabian Linge, Annett Zöphel, Klaus Kotzerke, Jörg Schreiber, Andreas Tinhofer, Inge Budach, Volker Sak, Ali Stuschke, Martin Balermpas, Panagiotis Rödel, Claus Ganswindt, Ute Belka, Claus Pigorsch, Steffi Combs, Stephanie E. Mönnich, David Zips, Daniel Krause, Mechthild Baumann, Michael Troost, Esther G. C. Löck, Steffen Richter, Christian Sci Rep Article Radiomics applies machine learning algorithms to quantitative imaging data to characterise the tumour phenotype and predict clinical outcome. For the development of radiomics risk models, a variety of different algorithms is available and it is not clear which one gives optimal results. Therefore, we assessed the performance of 11 machine learning algorithms combined with 12 feature selection methods by the concordance index (C-Index), to predict loco-regional tumour control (LRC) and overall survival for patients with head and neck squamous cell carcinoma. The considered algorithms are able to deal with continuous time-to-event survival data. Feature selection and model building were performed on a multicentre cohort (213 patients) and validated using an independent cohort (80 patients). We found several combinations of machine learning algorithms and feature selection methods which achieve similar results, e.g., MSR-RF: C-Index = 0.71 and BT-COX: C-Index = 0.70 in combination with Spearman feature selection. Using the best performing models, patients were stratified into groups of low and high risk of recurrence. Significant differences in LRC were obtained between both groups on the validation cohort. Based on the presented analysis, we identified a subset of algorithms which should be considered in future radiomics studies to develop stable and clinically relevant predictive models for time-to-event endpoints. Nature Publishing Group UK 2017-10-16 /pmc/articles/PMC5643429/ /pubmed/29038455 http://dx.doi.org/10.1038/s41598-017-13448-3 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Leger, Stefan Zwanenburg, Alex Pilz, Karoline Lohaus, Fabian Linge, Annett Zöphel, Klaus Kotzerke, Jörg Schreiber, Andreas Tinhofer, Inge Budach, Volker Sak, Ali Stuschke, Martin Balermpas, Panagiotis Rödel, Claus Ganswindt, Ute Belka, Claus Pigorsch, Steffi Combs, Stephanie E. Mönnich, David Zips, Daniel Krause, Mechthild Baumann, Michael Troost, Esther G. C. Löck, Steffen Richter, Christian A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling |
title | A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling |
title_full | A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling |
title_fullStr | A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling |
title_full_unstemmed | A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling |
title_short | A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling |
title_sort | comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5643429/ https://www.ncbi.nlm.nih.gov/pubmed/29038455 http://dx.doi.org/10.1038/s41598-017-13448-3 |
work_keys_str_mv | AT legerstefan acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT zwanenburgalex acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT pilzkaroline acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT lohausfabian acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT lingeannett acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT zophelklaus acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT kotzerkejorg acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT schreiberandreas acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT tinhoferinge acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT budachvolker acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT sakali acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT stuschkemartin acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT balermpaspanagiotis acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT rodelclaus acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT ganswindtute acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT belkaclaus acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT pigorschsteffi acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT combsstephaniee acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT monnichdavid acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT zipsdaniel acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT krausemechthild acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT baumannmichael acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT troostesthergc acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT locksteffen acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT richterchristian acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT legerstefan comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT zwanenburgalex comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT pilzkaroline comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT lohausfabian comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT lingeannett comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT zophelklaus comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT kotzerkejorg comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT schreiberandreas comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT tinhoferinge comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT budachvolker comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT sakali comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT stuschkemartin comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT balermpaspanagiotis comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT rodelclaus comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT ganswindtute comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT belkaclaus comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT pigorschsteffi comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT combsstephaniee comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT monnichdavid comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT zipsdaniel comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT krausemechthild comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT baumannmichael comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT troostesthergc comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT locksteffen comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling AT richterchristian comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling |