Cargando…

A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling

Radiomics applies machine learning algorithms to quantitative imaging data to characterise the tumour phenotype and predict clinical outcome. For the development of radiomics risk models, a variety of different algorithms is available and it is not clear which one gives optimal results. Therefore, w...

Descripción completa

Detalles Bibliográficos
Autores principales: Leger, Stefan, Zwanenburg, Alex, Pilz, Karoline, Lohaus, Fabian, Linge, Annett, Zöphel, Klaus, Kotzerke, Jörg, Schreiber, Andreas, Tinhofer, Inge, Budach, Volker, Sak, Ali, Stuschke, Martin, Balermpas, Panagiotis, Rödel, Claus, Ganswindt, Ute, Belka, Claus, Pigorsch, Steffi, Combs, Stephanie E., Mönnich, David, Zips, Daniel, Krause, Mechthild, Baumann, Michael, Troost, Esther G. C., Löck, Steffen, Richter, Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5643429/
https://www.ncbi.nlm.nih.gov/pubmed/29038455
http://dx.doi.org/10.1038/s41598-017-13448-3
_version_ 1783271530695753728
author Leger, Stefan
Zwanenburg, Alex
Pilz, Karoline
Lohaus, Fabian
Linge, Annett
Zöphel, Klaus
Kotzerke, Jörg
Schreiber, Andreas
Tinhofer, Inge
Budach, Volker
Sak, Ali
Stuschke, Martin
Balermpas, Panagiotis
Rödel, Claus
Ganswindt, Ute
Belka, Claus
Pigorsch, Steffi
Combs, Stephanie E.
Mönnich, David
Zips, Daniel
Krause, Mechthild
Baumann, Michael
Troost, Esther G. C.
Löck, Steffen
Richter, Christian
author_facet Leger, Stefan
Zwanenburg, Alex
Pilz, Karoline
Lohaus, Fabian
Linge, Annett
Zöphel, Klaus
Kotzerke, Jörg
Schreiber, Andreas
Tinhofer, Inge
Budach, Volker
Sak, Ali
Stuschke, Martin
Balermpas, Panagiotis
Rödel, Claus
Ganswindt, Ute
Belka, Claus
Pigorsch, Steffi
Combs, Stephanie E.
Mönnich, David
Zips, Daniel
Krause, Mechthild
Baumann, Michael
Troost, Esther G. C.
Löck, Steffen
Richter, Christian
author_sort Leger, Stefan
collection PubMed
description Radiomics applies machine learning algorithms to quantitative imaging data to characterise the tumour phenotype and predict clinical outcome. For the development of radiomics risk models, a variety of different algorithms is available and it is not clear which one gives optimal results. Therefore, we assessed the performance of 11 machine learning algorithms combined with 12 feature selection methods by the concordance index (C-Index), to predict loco-regional tumour control (LRC) and overall survival for patients with head and neck squamous cell carcinoma. The considered algorithms are able to deal with continuous time-to-event survival data. Feature selection and model building were performed on a multicentre cohort (213 patients) and validated using an independent cohort (80 patients). We found several combinations of machine learning algorithms and feature selection methods which achieve similar results, e.g., MSR-RF: C-Index = 0.71 and BT-COX: C-Index = 0.70 in combination with Spearman feature selection. Using the best performing models, patients were stratified into groups of low and high risk of recurrence. Significant differences in LRC were obtained between both groups on the validation cohort. Based on the presented analysis, we identified a subset of algorithms which should be considered in future radiomics studies to develop stable and clinically relevant predictive models for time-to-event endpoints.
format Online
Article
Text
id pubmed-5643429
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-56434292017-10-19 A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling Leger, Stefan Zwanenburg, Alex Pilz, Karoline Lohaus, Fabian Linge, Annett Zöphel, Klaus Kotzerke, Jörg Schreiber, Andreas Tinhofer, Inge Budach, Volker Sak, Ali Stuschke, Martin Balermpas, Panagiotis Rödel, Claus Ganswindt, Ute Belka, Claus Pigorsch, Steffi Combs, Stephanie E. Mönnich, David Zips, Daniel Krause, Mechthild Baumann, Michael Troost, Esther G. C. Löck, Steffen Richter, Christian Sci Rep Article Radiomics applies machine learning algorithms to quantitative imaging data to characterise the tumour phenotype and predict clinical outcome. For the development of radiomics risk models, a variety of different algorithms is available and it is not clear which one gives optimal results. Therefore, we assessed the performance of 11 machine learning algorithms combined with 12 feature selection methods by the concordance index (C-Index), to predict loco-regional tumour control (LRC) and overall survival for patients with head and neck squamous cell carcinoma. The considered algorithms are able to deal with continuous time-to-event survival data. Feature selection and model building were performed on a multicentre cohort (213 patients) and validated using an independent cohort (80 patients). We found several combinations of machine learning algorithms and feature selection methods which achieve similar results, e.g., MSR-RF: C-Index = 0.71 and BT-COX: C-Index = 0.70 in combination with Spearman feature selection. Using the best performing models, patients were stratified into groups of low and high risk of recurrence. Significant differences in LRC were obtained between both groups on the validation cohort. Based on the presented analysis, we identified a subset of algorithms which should be considered in future radiomics studies to develop stable and clinically relevant predictive models for time-to-event endpoints. Nature Publishing Group UK 2017-10-16 /pmc/articles/PMC5643429/ /pubmed/29038455 http://dx.doi.org/10.1038/s41598-017-13448-3 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Leger, Stefan
Zwanenburg, Alex
Pilz, Karoline
Lohaus, Fabian
Linge, Annett
Zöphel, Klaus
Kotzerke, Jörg
Schreiber, Andreas
Tinhofer, Inge
Budach, Volker
Sak, Ali
Stuschke, Martin
Balermpas, Panagiotis
Rödel, Claus
Ganswindt, Ute
Belka, Claus
Pigorsch, Steffi
Combs, Stephanie E.
Mönnich, David
Zips, Daniel
Krause, Mechthild
Baumann, Michael
Troost, Esther G. C.
Löck, Steffen
Richter, Christian
A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling
title A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling
title_full A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling
title_fullStr A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling
title_full_unstemmed A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling
title_short A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling
title_sort comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5643429/
https://www.ncbi.nlm.nih.gov/pubmed/29038455
http://dx.doi.org/10.1038/s41598-017-13448-3
work_keys_str_mv AT legerstefan acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT zwanenburgalex acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT pilzkaroline acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT lohausfabian acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT lingeannett acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT zophelklaus acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT kotzerkejorg acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT schreiberandreas acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT tinhoferinge acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT budachvolker acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT sakali acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT stuschkemartin acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT balermpaspanagiotis acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT rodelclaus acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT ganswindtute acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT belkaclaus acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT pigorschsteffi acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT combsstephaniee acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT monnichdavid acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT zipsdaniel acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT krausemechthild acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT baumannmichael acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT troostesthergc acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT locksteffen acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT richterchristian acomparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT legerstefan comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT zwanenburgalex comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT pilzkaroline comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT lohausfabian comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT lingeannett comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT zophelklaus comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT kotzerkejorg comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT schreiberandreas comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT tinhoferinge comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT budachvolker comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT sakali comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT stuschkemartin comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT balermpaspanagiotis comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT rodelclaus comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT ganswindtute comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT belkaclaus comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT pigorschsteffi comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT combsstephaniee comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT monnichdavid comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT zipsdaniel comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT krausemechthild comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT baumannmichael comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT troostesthergc comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT locksteffen comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling
AT richterchristian comparativestudyofmachinelearningmethodsfortimetoeventsurvivaldataforradiomicsriskmodelling