Cargando…
A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling
Radiomics applies machine learning algorithms to quantitative imaging data to characterise the tumour phenotype and predict clinical outcome. For the development of radiomics risk models, a variety of different algorithms is available and it is not clear which one gives optimal results. Therefore, w...
Autores principales: | Leger, Stefan, Zwanenburg, Alex, Pilz, Karoline, Lohaus, Fabian, Linge, Annett, Zöphel, Klaus, Kotzerke, Jörg, Schreiber, Andreas, Tinhofer, Inge, Budach, Volker, Sak, Ali, Stuschke, Martin, Balermpas, Panagiotis, Rödel, Claus, Ganswindt, Ute, Belka, Claus, Pigorsch, Steffi, Combs, Stephanie E., Mönnich, David, Zips, Daniel, Krause, Mechthild, Baumann, Michael, Troost, Esther G. C., Löck, Steffen, Richter, Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5643429/ https://www.ncbi.nlm.nih.gov/pubmed/29038455 http://dx.doi.org/10.1038/s41598-017-13448-3 |
Ejemplares similares
-
Heat shock protein 70 and tumor‐infiltrating NK cells as prognostic indicators for patients with squamous cell carcinoma of the head and neck after radiochemotherapy: A multicentre retrospective study of the German Cancer Consortium Radiation Oncology Group (DKTK‐ROG)
por: Stangl, Stefan, et al.
Publicado: (2017) -
SDF-1/CXCR4 expression in head and neck cancer and outcome after postoperative radiochemotherapy
por: De-Colle, Chiara, et al.
Publicado: (2017) -
Correction: ERCC2 gene single-nucleotide polymorphism as a prognostic factor for locally advanced head and neck carcinomas after definitive cisplatin-based radiochemotherapy
por: Guberina, Maja, et al.
Publicado: (2020) -
ERCC2 gene single-nucleotide polymorphism as a prognostic factor for locally advanced head and neck carcinomas after definitive cisplatin-based radiochemotherapy
por: Guberina, Maja, et al.
Publicado: (2020) -
Comprehensive Analysis of Tumour Sub-Volumes for Radiomic Risk Modelling in Locally Advanced HNSCC
por: Leger, Stefan, et al.
Publicado: (2020)