Cargando…
Molecular Tilting Alignment on Ag@C Nanocubes Monitored by Temperature-Dependent Surface Enhanced Raman Scattering
Core@shell Ag@C nanocubes (NCs) with a cubic silver core (~60 nm of side length) and a coating of ultrathin amorphous carbon (~4 nm) have been synthesized on a large scale by a one-pot hydrothermal method. The carbon layer not only protects the Ag@C nanocubes from oxidation under hydrothermal condit...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5643508/ https://www.ncbi.nlm.nih.gov/pubmed/29038515 http://dx.doi.org/10.1038/s41598-017-13022-x |
Sumario: | Core@shell Ag@C nanocubes (NCs) with a cubic silver core (~60 nm of side length) and a coating of ultrathin amorphous carbon (~4 nm) have been synthesized on a large scale by a one-pot hydrothermal method. The carbon layer not only protects the Ag@C nanocubes from oxidation under hydrothermal condition, but also stabilizes the structure of Ag cores. Considering that optical properties of nanostructured metals strongly depend on the temperature for SERS measurement, in this work we systemically investigate the relationship between the orientation of molecules adsorbed on Ag@C NCs and temperature by SERS spectra. Results suggest that the adsorbed 4-MBA molecules prefer a flat orientation on the NC surface with temperature decreasing. In addition, Ag@C NCs after one-year storage in water still maintain high SERS-active capability. Our synthesized Ag@C NCs with excellent and stable optical properties can be potentially applied in the field of sensor and ultrasensitive spectral analysis. |
---|