Cargando…

Decrease with aging of the microcirculatory function of the lumbar vertebral marrow preceding the loss of bone material density and the onset of intervertebral discal degeneration: A study about the potential cause

OBJECTIVE: Using a dynamic computed tomographic perfusion (CTP) imaging method to explore the age-related distribution of the microcirculation perfusion function in the vertebral marrow, the bone material density (BMD), and the intervertebral discal degeneration (IDD). Further, to discuss a possible...

Descripción completa

Detalles Bibliográficos
Autores principales: Ou-yang, Lin, Lu, Guang-ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: KeAi Publishing 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5643569/
https://www.ncbi.nlm.nih.gov/pubmed/29062993
http://dx.doi.org/10.1016/j.cdtm.2015.02.007
Descripción
Sumario:OBJECTIVE: Using a dynamic computed tomographic perfusion (CTP) imaging method to explore the age-related distribution of the microcirculation perfusion function in the vertebral marrow, the bone material density (BMD), and the intervertebral discal degeneration (IDD). Further, to discuss a possible causation relationship between them. METHODS: One hundred and eighty-six people were randomly enrolled by stratified sampling and grouped by age: ≤15, 16–25, 26–35, 36–45, 46–55, 56–65, 66–75, and ≥76 years old. The average CTP and BMD of the third and fourth lumbar vertebrae marrow were measured and the IDD incidence of the third-fourth vertebrae was assessed. The temporal–spatial distribution patterns of the age-related changes of the CTP, BMD, and IDD were described, and the correlations between them were calculated. RESULTS: The microcirculatory perfusion function of the vertebral marrow develops to maturity by 25 years and is maintained until age 35, then declines with aging. The BMD grew to a peak from 26 to 45 years old, then decreased yearly. The IDD showed a sudden increase after 45 years of age. The CTP [BF (r = 0.806, P = 0.000), BV (r = 0.685, P = 0.005) and PMB (r = 0.619, P = 0.001)] showed strong positive correlations and CTP [TTP (r = −0.211, P = 0.322) and MTT (r = −0.598, P = 0.002)] showed negative correlations with BMD. The CTP [BF (r = −0.815, P = 0.000), BV (r = −0.753, P = 0.000) and PMB (r = −0.690, P = 0.000)] had strong negative correlations, and CTP [TTP (r = 0.323, P = 0.126) and MTT (r = 0.628, P = 0.001)] had positive correlations with the incidence of IDD. CONCLUSION: The decrease with aging of the microcirculatory perfusion in the lumbar vertebral marrow preceded, and is a potential causative factor for the loss of BMD and the onset of IDD.