Cargando…
Decrease with aging of the microcirculatory function of the lumbar vertebral marrow preceding the loss of bone material density and the onset of intervertebral discal degeneration: A study about the potential cause
OBJECTIVE: Using a dynamic computed tomographic perfusion (CTP) imaging method to explore the age-related distribution of the microcirculation perfusion function in the vertebral marrow, the bone material density (BMD), and the intervertebral discal degeneration (IDD). Further, to discuss a possible...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
KeAi Publishing
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5643569/ https://www.ncbi.nlm.nih.gov/pubmed/29062993 http://dx.doi.org/10.1016/j.cdtm.2015.02.007 |
_version_ | 1783271559542079488 |
---|---|
author | Ou-yang, Lin Lu, Guang-ming |
author_facet | Ou-yang, Lin Lu, Guang-ming |
author_sort | Ou-yang, Lin |
collection | PubMed |
description | OBJECTIVE: Using a dynamic computed tomographic perfusion (CTP) imaging method to explore the age-related distribution of the microcirculation perfusion function in the vertebral marrow, the bone material density (BMD), and the intervertebral discal degeneration (IDD). Further, to discuss a possible causation relationship between them. METHODS: One hundred and eighty-six people were randomly enrolled by stratified sampling and grouped by age: ≤15, 16–25, 26–35, 36–45, 46–55, 56–65, 66–75, and ≥76 years old. The average CTP and BMD of the third and fourth lumbar vertebrae marrow were measured and the IDD incidence of the third-fourth vertebrae was assessed. The temporal–spatial distribution patterns of the age-related changes of the CTP, BMD, and IDD were described, and the correlations between them were calculated. RESULTS: The microcirculatory perfusion function of the vertebral marrow develops to maturity by 25 years and is maintained until age 35, then declines with aging. The BMD grew to a peak from 26 to 45 years old, then decreased yearly. The IDD showed a sudden increase after 45 years of age. The CTP [BF (r = 0.806, P = 0.000), BV (r = 0.685, P = 0.005) and PMB (r = 0.619, P = 0.001)] showed strong positive correlations and CTP [TTP (r = −0.211, P = 0.322) and MTT (r = −0.598, P = 0.002)] showed negative correlations with BMD. The CTP [BF (r = −0.815, P = 0.000), BV (r = −0.753, P = 0.000) and PMB (r = −0.690, P = 0.000)] had strong negative correlations, and CTP [TTP (r = 0.323, P = 0.126) and MTT (r = 0.628, P = 0.001)] had positive correlations with the incidence of IDD. CONCLUSION: The decrease with aging of the microcirculatory perfusion in the lumbar vertebral marrow preceded, and is a potential causative factor for the loss of BMD and the onset of IDD. |
format | Online Article Text |
id | pubmed-5643569 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | KeAi Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-56435692017-10-23 Decrease with aging of the microcirculatory function of the lumbar vertebral marrow preceding the loss of bone material density and the onset of intervertebral discal degeneration: A study about the potential cause Ou-yang, Lin Lu, Guang-ming Chronic Dis Transl Med Original Article OBJECTIVE: Using a dynamic computed tomographic perfusion (CTP) imaging method to explore the age-related distribution of the microcirculation perfusion function in the vertebral marrow, the bone material density (BMD), and the intervertebral discal degeneration (IDD). Further, to discuss a possible causation relationship between them. METHODS: One hundred and eighty-six people were randomly enrolled by stratified sampling and grouped by age: ≤15, 16–25, 26–35, 36–45, 46–55, 56–65, 66–75, and ≥76 years old. The average CTP and BMD of the third and fourth lumbar vertebrae marrow were measured and the IDD incidence of the third-fourth vertebrae was assessed. The temporal–spatial distribution patterns of the age-related changes of the CTP, BMD, and IDD were described, and the correlations between them were calculated. RESULTS: The microcirculatory perfusion function of the vertebral marrow develops to maturity by 25 years and is maintained until age 35, then declines with aging. The BMD grew to a peak from 26 to 45 years old, then decreased yearly. The IDD showed a sudden increase after 45 years of age. The CTP [BF (r = 0.806, P = 0.000), BV (r = 0.685, P = 0.005) and PMB (r = 0.619, P = 0.001)] showed strong positive correlations and CTP [TTP (r = −0.211, P = 0.322) and MTT (r = −0.598, P = 0.002)] showed negative correlations with BMD. The CTP [BF (r = −0.815, P = 0.000), BV (r = −0.753, P = 0.000) and PMB (r = −0.690, P = 0.000)] had strong negative correlations, and CTP [TTP (r = 0.323, P = 0.126) and MTT (r = 0.628, P = 0.001)] had positive correlations with the incidence of IDD. CONCLUSION: The decrease with aging of the microcirculatory perfusion in the lumbar vertebral marrow preceded, and is a potential causative factor for the loss of BMD and the onset of IDD. KeAi Publishing 2015-06-23 /pmc/articles/PMC5643569/ /pubmed/29062993 http://dx.doi.org/10.1016/j.cdtm.2015.02.007 Text en © 2015 Chinese Medical Association. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Article Ou-yang, Lin Lu, Guang-ming Decrease with aging of the microcirculatory function of the lumbar vertebral marrow preceding the loss of bone material density and the onset of intervertebral discal degeneration: A study about the potential cause |
title | Decrease with aging of the microcirculatory function of the lumbar vertebral marrow preceding the loss of bone material density and the onset of intervertebral discal degeneration: A study about the potential cause |
title_full | Decrease with aging of the microcirculatory function of the lumbar vertebral marrow preceding the loss of bone material density and the onset of intervertebral discal degeneration: A study about the potential cause |
title_fullStr | Decrease with aging of the microcirculatory function of the lumbar vertebral marrow preceding the loss of bone material density and the onset of intervertebral discal degeneration: A study about the potential cause |
title_full_unstemmed | Decrease with aging of the microcirculatory function of the lumbar vertebral marrow preceding the loss of bone material density and the onset of intervertebral discal degeneration: A study about the potential cause |
title_short | Decrease with aging of the microcirculatory function of the lumbar vertebral marrow preceding the loss of bone material density and the onset of intervertebral discal degeneration: A study about the potential cause |
title_sort | decrease with aging of the microcirculatory function of the lumbar vertebral marrow preceding the loss of bone material density and the onset of intervertebral discal degeneration: a study about the potential cause |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5643569/ https://www.ncbi.nlm.nih.gov/pubmed/29062993 http://dx.doi.org/10.1016/j.cdtm.2015.02.007 |
work_keys_str_mv | AT ouyanglin decreasewithagingofthemicrocirculatoryfunctionofthelumbarvertebralmarrowprecedingthelossofbonematerialdensityandtheonsetofintervertebraldiscaldegenerationastudyaboutthepotentialcause AT luguangming decreasewithagingofthemicrocirculatoryfunctionofthelumbarvertebralmarrowprecedingthelossofbonematerialdensityandtheonsetofintervertebraldiscaldegenerationastudyaboutthepotentialcause |