Cargando…

Trace‐Element Incorporation into Intracellular Pools Uncovers Calcium‐Pathways in a Coccolithophore

Many organisms form minerals from precursor phases that crystallize under strict biological control. The dynamic intracellular processes of formation, transport, and deposition of these precursor phases are challenging to identify. An unusual situation is recently revealed for the calcifying alga Em...

Descripción completa

Detalles Bibliográficos
Autores principales: Gal, Assaf, Sviben, Sanja, Wirth, Richard, Schreiber, Anja, Lassalle‐Kaiser, Benedikt, Faivre, Damien, Scheffel, André
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5644232/
https://www.ncbi.nlm.nih.gov/pubmed/29051853
http://dx.doi.org/10.1002/advs.201700088
_version_ 1783271695486812160
author Gal, Assaf
Sviben, Sanja
Wirth, Richard
Schreiber, Anja
Lassalle‐Kaiser, Benedikt
Faivre, Damien
Scheffel, André
author_facet Gal, Assaf
Sviben, Sanja
Wirth, Richard
Schreiber, Anja
Lassalle‐Kaiser, Benedikt
Faivre, Damien
Scheffel, André
author_sort Gal, Assaf
collection PubMed
description Many organisms form minerals from precursor phases that crystallize under strict biological control. The dynamic intracellular processes of formation, transport, and deposition of these precursor phases are challenging to identify. An unusual situation is recently revealed for the calcifying alga Emiliania huxleyi, as the cells contain a compartment filled with a concentrated Ca and P phase but the final calcite crystals, which are nucleated in a different compartment, are P‐free. Thus, the connection of the Ca–P‐rich pool to the mineralization process remains unclear. Here, pulse‐chase experiments are used with Sr to label the Ca–P‐rich phase in E. huxleyi cells, and cryo X‐ray absorption spectroscopy and analytical transmission electron microscopy to follow the Sr within cells. It is found that Sr is first found in the Ca–P‐rich phase and then becomes incorporated into the calcite. This demonstrates that the calcium used by the cells to build calcite originates from the Ca–P‐rich pool.
format Online
Article
Text
id pubmed-5644232
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-56442322017-10-19 Trace‐Element Incorporation into Intracellular Pools Uncovers Calcium‐Pathways in a Coccolithophore Gal, Assaf Sviben, Sanja Wirth, Richard Schreiber, Anja Lassalle‐Kaiser, Benedikt Faivre, Damien Scheffel, André Adv Sci (Weinh) Communications Many organisms form minerals from precursor phases that crystallize under strict biological control. The dynamic intracellular processes of formation, transport, and deposition of these precursor phases are challenging to identify. An unusual situation is recently revealed for the calcifying alga Emiliania huxleyi, as the cells contain a compartment filled with a concentrated Ca and P phase but the final calcite crystals, which are nucleated in a different compartment, are P‐free. Thus, the connection of the Ca–P‐rich pool to the mineralization process remains unclear. Here, pulse‐chase experiments are used with Sr to label the Ca–P‐rich phase in E. huxleyi cells, and cryo X‐ray absorption spectroscopy and analytical transmission electron microscopy to follow the Sr within cells. It is found that Sr is first found in the Ca–P‐rich phase and then becomes incorporated into the calcite. This demonstrates that the calcium used by the cells to build calcite originates from the Ca–P‐rich pool. John Wiley and Sons Inc. 2017-07-05 /pmc/articles/PMC5644232/ /pubmed/29051853 http://dx.doi.org/10.1002/advs.201700088 Text en © 2017 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Communications
Gal, Assaf
Sviben, Sanja
Wirth, Richard
Schreiber, Anja
Lassalle‐Kaiser, Benedikt
Faivre, Damien
Scheffel, André
Trace‐Element Incorporation into Intracellular Pools Uncovers Calcium‐Pathways in a Coccolithophore
title Trace‐Element Incorporation into Intracellular Pools Uncovers Calcium‐Pathways in a Coccolithophore
title_full Trace‐Element Incorporation into Intracellular Pools Uncovers Calcium‐Pathways in a Coccolithophore
title_fullStr Trace‐Element Incorporation into Intracellular Pools Uncovers Calcium‐Pathways in a Coccolithophore
title_full_unstemmed Trace‐Element Incorporation into Intracellular Pools Uncovers Calcium‐Pathways in a Coccolithophore
title_short Trace‐Element Incorporation into Intracellular Pools Uncovers Calcium‐Pathways in a Coccolithophore
title_sort trace‐element incorporation into intracellular pools uncovers calcium‐pathways in a coccolithophore
topic Communications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5644232/
https://www.ncbi.nlm.nih.gov/pubmed/29051853
http://dx.doi.org/10.1002/advs.201700088
work_keys_str_mv AT galassaf traceelementincorporationintointracellularpoolsuncoverscalciumpathwaysinacoccolithophore
AT svibensanja traceelementincorporationintointracellularpoolsuncoverscalciumpathwaysinacoccolithophore
AT wirthrichard traceelementincorporationintointracellularpoolsuncoverscalciumpathwaysinacoccolithophore
AT schreiberanja traceelementincorporationintointracellularpoolsuncoverscalciumpathwaysinacoccolithophore
AT lassallekaiserbenedikt traceelementincorporationintointracellularpoolsuncoverscalciumpathwaysinacoccolithophore
AT faivredamien traceelementincorporationintointracellularpoolsuncoverscalciumpathwaysinacoccolithophore
AT scheffelandre traceelementincorporationintointracellularpoolsuncoverscalciumpathwaysinacoccolithophore