Cargando…

Targeted metabolomics and medication classification data from participants in the ADNI1 cohort

Alzheimer’s disease (AD) is the most common neurodegenerative disease presenting major health and economic challenges that continue to grow. Mechanisms of disease are poorly understood but significant data point to metabolic defects that might contribute to disease pathogenesis. The Alzheimer Diseas...

Descripción completa

Detalles Bibliográficos
Autores principales: St John-Williams, Lisa, Blach, Colette, Toledo, Jon B., Rotroff, Daniel M., Kim, Sungeun, Klavins, Kristaps, Baillie, Rebecca, Han, Xianlin, Mahmoudiandehkordi, Siamak, Jack, John, Massaro, Tyler J., Lucas, Joseph E., Louie, Gregory, Motsinger-Reif, Alison A., Risacher, Shannon L., Saykin, Andrew J., Kastenmüller, Gabi, Arnold, Matthias, Koal, Therese, Moseley, M. Arthur, Mangravite, Lara M., Peters, Mette A., Tenenbaum, Jessica D., Thompson, J. Will, Kaddurah-Daouk, Rima
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5644370/
https://www.ncbi.nlm.nih.gov/pubmed/29039849
http://dx.doi.org/10.1038/sdata.2017.140
_version_ 1783271721303801856
author St John-Williams, Lisa
Blach, Colette
Toledo, Jon B.
Rotroff, Daniel M.
Kim, Sungeun
Klavins, Kristaps
Baillie, Rebecca
Han, Xianlin
Mahmoudiandehkordi, Siamak
Jack, John
Massaro, Tyler J.
Lucas, Joseph E.
Louie, Gregory
Motsinger-Reif, Alison A.
Risacher, Shannon L.
Saykin, Andrew J.
Kastenmüller, Gabi
Arnold, Matthias
Koal, Therese
Moseley, M. Arthur
Mangravite, Lara M.
Peters, Mette A.
Tenenbaum, Jessica D.
Thompson, J. Will
Kaddurah-Daouk, Rima
author_facet St John-Williams, Lisa
Blach, Colette
Toledo, Jon B.
Rotroff, Daniel M.
Kim, Sungeun
Klavins, Kristaps
Baillie, Rebecca
Han, Xianlin
Mahmoudiandehkordi, Siamak
Jack, John
Massaro, Tyler J.
Lucas, Joseph E.
Louie, Gregory
Motsinger-Reif, Alison A.
Risacher, Shannon L.
Saykin, Andrew J.
Kastenmüller, Gabi
Arnold, Matthias
Koal, Therese
Moseley, M. Arthur
Mangravite, Lara M.
Peters, Mette A.
Tenenbaum, Jessica D.
Thompson, J. Will
Kaddurah-Daouk, Rima
author_sort St John-Williams, Lisa
collection PubMed
description Alzheimer’s disease (AD) is the most common neurodegenerative disease presenting major health and economic challenges that continue to grow. Mechanisms of disease are poorly understood but significant data point to metabolic defects that might contribute to disease pathogenesis. The Alzheimer Disease Metabolomics Consortium (ADMC) in partnership with Alzheimer Disease Neuroimaging Initiative (ADNI) is creating a comprehensive biochemical database for AD. Using targeted and non- targeted metabolomics and lipidomics platforms we are mapping metabolic pathway and network failures across the trajectory of disease. In this report we present quantitative metabolomics data generated on serum from 199 control, 356 mild cognitive impairment and 175 AD subjects enrolled in ADNI1 using AbsoluteIDQ-p180 platform, along with the pipeline for data preprocessing and medication classification for confound correction. The dataset presented here is the first of eight metabolomics datasets being generated for broad biochemical investigation of the AD metabolome. We expect that these collective metabolomics datasets will provide valuable resources for researchers to identify novel molecular mechanisms contributing to AD pathogenesis and disease phenotypes.
format Online
Article
Text
id pubmed-5644370
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-56443702017-10-23 Targeted metabolomics and medication classification data from participants in the ADNI1 cohort St John-Williams, Lisa Blach, Colette Toledo, Jon B. Rotroff, Daniel M. Kim, Sungeun Klavins, Kristaps Baillie, Rebecca Han, Xianlin Mahmoudiandehkordi, Siamak Jack, John Massaro, Tyler J. Lucas, Joseph E. Louie, Gregory Motsinger-Reif, Alison A. Risacher, Shannon L. Saykin, Andrew J. Kastenmüller, Gabi Arnold, Matthias Koal, Therese Moseley, M. Arthur Mangravite, Lara M. Peters, Mette A. Tenenbaum, Jessica D. Thompson, J. Will Kaddurah-Daouk, Rima Sci Data Data Descriptor Alzheimer’s disease (AD) is the most common neurodegenerative disease presenting major health and economic challenges that continue to grow. Mechanisms of disease are poorly understood but significant data point to metabolic defects that might contribute to disease pathogenesis. The Alzheimer Disease Metabolomics Consortium (ADMC) in partnership with Alzheimer Disease Neuroimaging Initiative (ADNI) is creating a comprehensive biochemical database for AD. Using targeted and non- targeted metabolomics and lipidomics platforms we are mapping metabolic pathway and network failures across the trajectory of disease. In this report we present quantitative metabolomics data generated on serum from 199 control, 356 mild cognitive impairment and 175 AD subjects enrolled in ADNI1 using AbsoluteIDQ-p180 platform, along with the pipeline for data preprocessing and medication classification for confound correction. The dataset presented here is the first of eight metabolomics datasets being generated for broad biochemical investigation of the AD metabolome. We expect that these collective metabolomics datasets will provide valuable resources for researchers to identify novel molecular mechanisms contributing to AD pathogenesis and disease phenotypes. Nature Publishing Group 2017-10-17 /pmc/articles/PMC5644370/ /pubmed/29039849 http://dx.doi.org/10.1038/sdata.2017.140 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the metadata files made available in this article.
spellingShingle Data Descriptor
St John-Williams, Lisa
Blach, Colette
Toledo, Jon B.
Rotroff, Daniel M.
Kim, Sungeun
Klavins, Kristaps
Baillie, Rebecca
Han, Xianlin
Mahmoudiandehkordi, Siamak
Jack, John
Massaro, Tyler J.
Lucas, Joseph E.
Louie, Gregory
Motsinger-Reif, Alison A.
Risacher, Shannon L.
Saykin, Andrew J.
Kastenmüller, Gabi
Arnold, Matthias
Koal, Therese
Moseley, M. Arthur
Mangravite, Lara M.
Peters, Mette A.
Tenenbaum, Jessica D.
Thompson, J. Will
Kaddurah-Daouk, Rima
Targeted metabolomics and medication classification data from participants in the ADNI1 cohort
title Targeted metabolomics and medication classification data from participants in the ADNI1 cohort
title_full Targeted metabolomics and medication classification data from participants in the ADNI1 cohort
title_fullStr Targeted metabolomics and medication classification data from participants in the ADNI1 cohort
title_full_unstemmed Targeted metabolomics and medication classification data from participants in the ADNI1 cohort
title_short Targeted metabolomics and medication classification data from participants in the ADNI1 cohort
title_sort targeted metabolomics and medication classification data from participants in the adni1 cohort
topic Data Descriptor
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5644370/
https://www.ncbi.nlm.nih.gov/pubmed/29039849
http://dx.doi.org/10.1038/sdata.2017.140
work_keys_str_mv AT stjohnwilliamslisa targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort
AT blachcolette targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort
AT toledojonb targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort
AT rotroffdanielm targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort
AT kimsungeun targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort
AT klavinskristaps targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort
AT baillierebecca targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort
AT hanxianlin targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort
AT mahmoudiandehkordisiamak targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort
AT jackjohn targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort
AT massarotylerj targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort
AT lucasjosephe targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort
AT louiegregory targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort
AT motsingerreifalisona targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort
AT risachershannonl targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort
AT targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort
AT targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort
AT saykinandrewj targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort
AT kastenmullergabi targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort
AT arnoldmatthias targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort
AT koaltherese targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort
AT moseleymarthur targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort
AT mangravitelaram targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort
AT petersmettea targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort
AT tenenbaumjessicad targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort
AT thompsonjwill targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort
AT kaddurahdaoukrima targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort