Cargando…
Targeted metabolomics and medication classification data from participants in the ADNI1 cohort
Alzheimer’s disease (AD) is the most common neurodegenerative disease presenting major health and economic challenges that continue to grow. Mechanisms of disease are poorly understood but significant data point to metabolic defects that might contribute to disease pathogenesis. The Alzheimer Diseas...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5644370/ https://www.ncbi.nlm.nih.gov/pubmed/29039849 http://dx.doi.org/10.1038/sdata.2017.140 |
_version_ | 1783271721303801856 |
---|---|
author | St John-Williams, Lisa Blach, Colette Toledo, Jon B. Rotroff, Daniel M. Kim, Sungeun Klavins, Kristaps Baillie, Rebecca Han, Xianlin Mahmoudiandehkordi, Siamak Jack, John Massaro, Tyler J. Lucas, Joseph E. Louie, Gregory Motsinger-Reif, Alison A. Risacher, Shannon L. Saykin, Andrew J. Kastenmüller, Gabi Arnold, Matthias Koal, Therese Moseley, M. Arthur Mangravite, Lara M. Peters, Mette A. Tenenbaum, Jessica D. Thompson, J. Will Kaddurah-Daouk, Rima |
author_facet | St John-Williams, Lisa Blach, Colette Toledo, Jon B. Rotroff, Daniel M. Kim, Sungeun Klavins, Kristaps Baillie, Rebecca Han, Xianlin Mahmoudiandehkordi, Siamak Jack, John Massaro, Tyler J. Lucas, Joseph E. Louie, Gregory Motsinger-Reif, Alison A. Risacher, Shannon L. Saykin, Andrew J. Kastenmüller, Gabi Arnold, Matthias Koal, Therese Moseley, M. Arthur Mangravite, Lara M. Peters, Mette A. Tenenbaum, Jessica D. Thompson, J. Will Kaddurah-Daouk, Rima |
author_sort | St John-Williams, Lisa |
collection | PubMed |
description | Alzheimer’s disease (AD) is the most common neurodegenerative disease presenting major health and economic challenges that continue to grow. Mechanisms of disease are poorly understood but significant data point to metabolic defects that might contribute to disease pathogenesis. The Alzheimer Disease Metabolomics Consortium (ADMC) in partnership with Alzheimer Disease Neuroimaging Initiative (ADNI) is creating a comprehensive biochemical database for AD. Using targeted and non- targeted metabolomics and lipidomics platforms we are mapping metabolic pathway and network failures across the trajectory of disease. In this report we present quantitative metabolomics data generated on serum from 199 control, 356 mild cognitive impairment and 175 AD subjects enrolled in ADNI1 using AbsoluteIDQ-p180 platform, along with the pipeline for data preprocessing and medication classification for confound correction. The dataset presented here is the first of eight metabolomics datasets being generated for broad biochemical investigation of the AD metabolome. We expect that these collective metabolomics datasets will provide valuable resources for researchers to identify novel molecular mechanisms contributing to AD pathogenesis and disease phenotypes. |
format | Online Article Text |
id | pubmed-5644370 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-56443702017-10-23 Targeted metabolomics and medication classification data from participants in the ADNI1 cohort St John-Williams, Lisa Blach, Colette Toledo, Jon B. Rotroff, Daniel M. Kim, Sungeun Klavins, Kristaps Baillie, Rebecca Han, Xianlin Mahmoudiandehkordi, Siamak Jack, John Massaro, Tyler J. Lucas, Joseph E. Louie, Gregory Motsinger-Reif, Alison A. Risacher, Shannon L. Saykin, Andrew J. Kastenmüller, Gabi Arnold, Matthias Koal, Therese Moseley, M. Arthur Mangravite, Lara M. Peters, Mette A. Tenenbaum, Jessica D. Thompson, J. Will Kaddurah-Daouk, Rima Sci Data Data Descriptor Alzheimer’s disease (AD) is the most common neurodegenerative disease presenting major health and economic challenges that continue to grow. Mechanisms of disease are poorly understood but significant data point to metabolic defects that might contribute to disease pathogenesis. The Alzheimer Disease Metabolomics Consortium (ADMC) in partnership with Alzheimer Disease Neuroimaging Initiative (ADNI) is creating a comprehensive biochemical database for AD. Using targeted and non- targeted metabolomics and lipidomics platforms we are mapping metabolic pathway and network failures across the trajectory of disease. In this report we present quantitative metabolomics data generated on serum from 199 control, 356 mild cognitive impairment and 175 AD subjects enrolled in ADNI1 using AbsoluteIDQ-p180 platform, along with the pipeline for data preprocessing and medication classification for confound correction. The dataset presented here is the first of eight metabolomics datasets being generated for broad biochemical investigation of the AD metabolome. We expect that these collective metabolomics datasets will provide valuable resources for researchers to identify novel molecular mechanisms contributing to AD pathogenesis and disease phenotypes. Nature Publishing Group 2017-10-17 /pmc/articles/PMC5644370/ /pubmed/29039849 http://dx.doi.org/10.1038/sdata.2017.140 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the metadata files made available in this article. |
spellingShingle | Data Descriptor St John-Williams, Lisa Blach, Colette Toledo, Jon B. Rotroff, Daniel M. Kim, Sungeun Klavins, Kristaps Baillie, Rebecca Han, Xianlin Mahmoudiandehkordi, Siamak Jack, John Massaro, Tyler J. Lucas, Joseph E. Louie, Gregory Motsinger-Reif, Alison A. Risacher, Shannon L. Saykin, Andrew J. Kastenmüller, Gabi Arnold, Matthias Koal, Therese Moseley, M. Arthur Mangravite, Lara M. Peters, Mette A. Tenenbaum, Jessica D. Thompson, J. Will Kaddurah-Daouk, Rima Targeted metabolomics and medication classification data from participants in the ADNI1 cohort |
title | Targeted metabolomics and medication classification data from participants in the ADNI1 cohort |
title_full | Targeted metabolomics and medication classification data from participants in the ADNI1 cohort |
title_fullStr | Targeted metabolomics and medication classification data from participants in the ADNI1 cohort |
title_full_unstemmed | Targeted metabolomics and medication classification data from participants in the ADNI1 cohort |
title_short | Targeted metabolomics and medication classification data from participants in the ADNI1 cohort |
title_sort | targeted metabolomics and medication classification data from participants in the adni1 cohort |
topic | Data Descriptor |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5644370/ https://www.ncbi.nlm.nih.gov/pubmed/29039849 http://dx.doi.org/10.1038/sdata.2017.140 |
work_keys_str_mv | AT stjohnwilliamslisa targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort AT blachcolette targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort AT toledojonb targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort AT rotroffdanielm targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort AT kimsungeun targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort AT klavinskristaps targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort AT baillierebecca targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort AT hanxianlin targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort AT mahmoudiandehkordisiamak targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort AT jackjohn targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort AT massarotylerj targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort AT lucasjosephe targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort AT louiegregory targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort AT motsingerreifalisona targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort AT risachershannonl targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort AT targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort AT targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort AT saykinandrewj targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort AT kastenmullergabi targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort AT arnoldmatthias targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort AT koaltherese targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort AT moseleymarthur targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort AT mangravitelaram targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort AT petersmettea targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort AT tenenbaumjessicad targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort AT thompsonjwill targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort AT kaddurahdaoukrima targetedmetabolomicsandmedicationclassificationdatafromparticipantsintheadni1cohort |