Cargando…
Sole vibration improves locomotion through the recovery of joint movements in a mouse cast model
We investigated the effects of a vibratory stimulus on the plantar surface of the hind limb for motor, sensory, and locomotive function using a mouse cast model. The right knee joint of C57BL/6 male mice (7 weeks, 20 g, n = 31) was flexed with aluminum splint and tape for 6 weeks. These mice were ra...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5645094/ https://www.ncbi.nlm.nih.gov/pubmed/29040289 http://dx.doi.org/10.1371/journal.pone.0186189 |
_version_ | 1783271831942201344 |
---|---|
author | Doi, Atsushi Miyamoto, Kazuaki Nakano, Yu-shin Sakasaki, Juntaro Kasae, Syota Nishimura, Keisuke Shin, Min-Chul Yoshimura, Megumu |
author_facet | Doi, Atsushi Miyamoto, Kazuaki Nakano, Yu-shin Sakasaki, Juntaro Kasae, Syota Nishimura, Keisuke Shin, Min-Chul Yoshimura, Megumu |
author_sort | Doi, Atsushi |
collection | PubMed |
description | We investigated the effects of a vibratory stimulus on the plantar surface of the hind limb for motor, sensory, and locomotive function using a mouse cast model. The right knee joint of C57BL/6 male mice (7 weeks, 20 g, n = 31) was flexed with aluminum splint and tape for 6 weeks. These mice were randomly divided into 2 groups (control group, n = 11 and vibration group, n = 12). The mice in the vibration group received vibration on the sole of the ankle for 15 minutes per day, 5 days per week. After the knee joint cast was removed, we measured the range of motion (ROM) of both knee and ankle joints and the sensory threshold of the sole. Further, both walking and swimming movements were analyzed with a digital video. The sole vibration did not affect the passive ROM of the knee joint and sensory threshold after cast removal. However, it increased the ankle dorsiflexion range and improved free walking, swimming, and active movement of the knee joint. In conclusion, we show that the vibration recovered both walking and swimming movements, which resulted from improvements in both the passive ankle dorsiflexion and active knee movement. |
format | Online Article Text |
id | pubmed-5645094 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-56450942017-10-30 Sole vibration improves locomotion through the recovery of joint movements in a mouse cast model Doi, Atsushi Miyamoto, Kazuaki Nakano, Yu-shin Sakasaki, Juntaro Kasae, Syota Nishimura, Keisuke Shin, Min-Chul Yoshimura, Megumu PLoS One Research Article We investigated the effects of a vibratory stimulus on the plantar surface of the hind limb for motor, sensory, and locomotive function using a mouse cast model. The right knee joint of C57BL/6 male mice (7 weeks, 20 g, n = 31) was flexed with aluminum splint and tape for 6 weeks. These mice were randomly divided into 2 groups (control group, n = 11 and vibration group, n = 12). The mice in the vibration group received vibration on the sole of the ankle for 15 minutes per day, 5 days per week. After the knee joint cast was removed, we measured the range of motion (ROM) of both knee and ankle joints and the sensory threshold of the sole. Further, both walking and swimming movements were analyzed with a digital video. The sole vibration did not affect the passive ROM of the knee joint and sensory threshold after cast removal. However, it increased the ankle dorsiflexion range and improved free walking, swimming, and active movement of the knee joint. In conclusion, we show that the vibration recovered both walking and swimming movements, which resulted from improvements in both the passive ankle dorsiflexion and active knee movement. Public Library of Science 2017-10-17 /pmc/articles/PMC5645094/ /pubmed/29040289 http://dx.doi.org/10.1371/journal.pone.0186189 Text en © 2017 Doi et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Doi, Atsushi Miyamoto, Kazuaki Nakano, Yu-shin Sakasaki, Juntaro Kasae, Syota Nishimura, Keisuke Shin, Min-Chul Yoshimura, Megumu Sole vibration improves locomotion through the recovery of joint movements in a mouse cast model |
title | Sole vibration improves locomotion through the recovery of joint movements in a mouse cast model |
title_full | Sole vibration improves locomotion through the recovery of joint movements in a mouse cast model |
title_fullStr | Sole vibration improves locomotion through the recovery of joint movements in a mouse cast model |
title_full_unstemmed | Sole vibration improves locomotion through the recovery of joint movements in a mouse cast model |
title_short | Sole vibration improves locomotion through the recovery of joint movements in a mouse cast model |
title_sort | sole vibration improves locomotion through the recovery of joint movements in a mouse cast model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5645094/ https://www.ncbi.nlm.nih.gov/pubmed/29040289 http://dx.doi.org/10.1371/journal.pone.0186189 |
work_keys_str_mv | AT doiatsushi solevibrationimproveslocomotionthroughtherecoveryofjointmovementsinamousecastmodel AT miyamotokazuaki solevibrationimproveslocomotionthroughtherecoveryofjointmovementsinamousecastmodel AT nakanoyushin solevibrationimproveslocomotionthroughtherecoveryofjointmovementsinamousecastmodel AT sakasakijuntaro solevibrationimproveslocomotionthroughtherecoveryofjointmovementsinamousecastmodel AT kasaesyota solevibrationimproveslocomotionthroughtherecoveryofjointmovementsinamousecastmodel AT nishimurakeisuke solevibrationimproveslocomotionthroughtherecoveryofjointmovementsinamousecastmodel AT shinminchul solevibrationimproveslocomotionthroughtherecoveryofjointmovementsinamousecastmodel AT yoshimuramegumu solevibrationimproveslocomotionthroughtherecoveryofjointmovementsinamousecastmodel |