Cargando…
Topological quantum phase transition from mirror to time reversal symmetry protected topological insulator
Topological insulators constitute a new phase of matter protected by symmetries. Time-reversal symmetry protects strong topological insulators of the Z(2) class, which possess an odd number of metallic surface states with dispersion of a Dirac cone. Topological crystalline insulators are merely prot...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5645419/ https://www.ncbi.nlm.nih.gov/pubmed/29042565 http://dx.doi.org/10.1038/s41467-017-01204-0 |
_version_ | 1783271886303526912 |
---|---|
author | Mandal, Partha S. Springholz, Gunther Volobuev, Valentine V. Caha, Ondrej Varykhalov, Andrei Golias, Evangelos Bauer, Günther Rader, Oliver Sánchez-Barriga, Jaime |
author_facet | Mandal, Partha S. Springholz, Gunther Volobuev, Valentine V. Caha, Ondrej Varykhalov, Andrei Golias, Evangelos Bauer, Günther Rader, Oliver Sánchez-Barriga, Jaime |
author_sort | Mandal, Partha S. |
collection | PubMed |
description | Topological insulators constitute a new phase of matter protected by symmetries. Time-reversal symmetry protects strong topological insulators of the Z(2) class, which possess an odd number of metallic surface states with dispersion of a Dirac cone. Topological crystalline insulators are merely protected by individual crystal symmetries and exist for an even number of Dirac cones. Here, we demonstrate that Bi-doping of Pb(1−x)Sn(x)Se (111) epilayers induces a quantum phase transition from a topological crystalline insulator to a Z(2) topological insulator. This occurs because Bi-doping lifts the fourfold valley degeneracy and induces a gap at [Formula: see text] , while the three Dirac cones at the [Formula: see text] points of the surface Brillouin zone remain intact. We interpret this new phase transition as caused by a lattice distortion. Our findings extend the topological phase diagram enormously and make strong topological insulators switchable by distortions or electric fields. |
format | Online Article Text |
id | pubmed-5645419 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-56454192017-10-19 Topological quantum phase transition from mirror to time reversal symmetry protected topological insulator Mandal, Partha S. Springholz, Gunther Volobuev, Valentine V. Caha, Ondrej Varykhalov, Andrei Golias, Evangelos Bauer, Günther Rader, Oliver Sánchez-Barriga, Jaime Nat Commun Article Topological insulators constitute a new phase of matter protected by symmetries. Time-reversal symmetry protects strong topological insulators of the Z(2) class, which possess an odd number of metallic surface states with dispersion of a Dirac cone. Topological crystalline insulators are merely protected by individual crystal symmetries and exist for an even number of Dirac cones. Here, we demonstrate that Bi-doping of Pb(1−x)Sn(x)Se (111) epilayers induces a quantum phase transition from a topological crystalline insulator to a Z(2) topological insulator. This occurs because Bi-doping lifts the fourfold valley degeneracy and induces a gap at [Formula: see text] , while the three Dirac cones at the [Formula: see text] points of the surface Brillouin zone remain intact. We interpret this new phase transition as caused by a lattice distortion. Our findings extend the topological phase diagram enormously and make strong topological insulators switchable by distortions or electric fields. Nature Publishing Group UK 2017-10-17 /pmc/articles/PMC5645419/ /pubmed/29042565 http://dx.doi.org/10.1038/s41467-017-01204-0 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Mandal, Partha S. Springholz, Gunther Volobuev, Valentine V. Caha, Ondrej Varykhalov, Andrei Golias, Evangelos Bauer, Günther Rader, Oliver Sánchez-Barriga, Jaime Topological quantum phase transition from mirror to time reversal symmetry protected topological insulator |
title | Topological quantum phase transition from mirror to time reversal symmetry protected topological insulator |
title_full | Topological quantum phase transition from mirror to time reversal symmetry protected topological insulator |
title_fullStr | Topological quantum phase transition from mirror to time reversal symmetry protected topological insulator |
title_full_unstemmed | Topological quantum phase transition from mirror to time reversal symmetry protected topological insulator |
title_short | Topological quantum phase transition from mirror to time reversal symmetry protected topological insulator |
title_sort | topological quantum phase transition from mirror to time reversal symmetry protected topological insulator |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5645419/ https://www.ncbi.nlm.nih.gov/pubmed/29042565 http://dx.doi.org/10.1038/s41467-017-01204-0 |
work_keys_str_mv | AT mandalparthas topologicalquantumphasetransitionfrommirrortotimereversalsymmetryprotectedtopologicalinsulator AT springholzgunther topologicalquantumphasetransitionfrommirrortotimereversalsymmetryprotectedtopologicalinsulator AT volobuevvalentinev topologicalquantumphasetransitionfrommirrortotimereversalsymmetryprotectedtopologicalinsulator AT cahaondrej topologicalquantumphasetransitionfrommirrortotimereversalsymmetryprotectedtopologicalinsulator AT varykhalovandrei topologicalquantumphasetransitionfrommirrortotimereversalsymmetryprotectedtopologicalinsulator AT goliasevangelos topologicalquantumphasetransitionfrommirrortotimereversalsymmetryprotectedtopologicalinsulator AT bauergunther topologicalquantumphasetransitionfrommirrortotimereversalsymmetryprotectedtopologicalinsulator AT raderoliver topologicalquantumphasetransitionfrommirrortotimereversalsymmetryprotectedtopologicalinsulator AT sanchezbarrigajaime topologicalquantumphasetransitionfrommirrortotimereversalsymmetryprotectedtopologicalinsulator |