Cargando…

Topological quantum phase transition from mirror to time reversal symmetry protected topological insulator

Topological insulators constitute a new phase of matter protected by symmetries. Time-reversal symmetry protects strong topological insulators of the Z(2) class, which possess an odd number of metallic surface states with dispersion of a Dirac cone. Topological crystalline insulators are merely prot...

Descripción completa

Detalles Bibliográficos
Autores principales: Mandal, Partha S., Springholz, Gunther, Volobuev, Valentine V., Caha, Ondrej, Varykhalov, Andrei, Golias, Evangelos, Bauer, Günther, Rader, Oliver, Sánchez-Barriga, Jaime
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5645419/
https://www.ncbi.nlm.nih.gov/pubmed/29042565
http://dx.doi.org/10.1038/s41467-017-01204-0
_version_ 1783271886303526912
author Mandal, Partha S.
Springholz, Gunther
Volobuev, Valentine V.
Caha, Ondrej
Varykhalov, Andrei
Golias, Evangelos
Bauer, Günther
Rader, Oliver
Sánchez-Barriga, Jaime
author_facet Mandal, Partha S.
Springholz, Gunther
Volobuev, Valentine V.
Caha, Ondrej
Varykhalov, Andrei
Golias, Evangelos
Bauer, Günther
Rader, Oliver
Sánchez-Barriga, Jaime
author_sort Mandal, Partha S.
collection PubMed
description Topological insulators constitute a new phase of matter protected by symmetries. Time-reversal symmetry protects strong topological insulators of the Z(2) class, which possess an odd number of metallic surface states with dispersion of a Dirac cone. Topological crystalline insulators are merely protected by individual crystal symmetries and exist for an even number of Dirac cones. Here, we demonstrate that Bi-doping of Pb(1−x)Sn(x)Se (111) epilayers induces a quantum phase transition from a topological crystalline insulator to a Z(2) topological insulator. This occurs because Bi-doping lifts the fourfold valley degeneracy and induces a gap at [Formula: see text] , while the three Dirac cones at the [Formula: see text] points of the surface Brillouin zone remain intact. We interpret this new phase transition as caused by a lattice distortion. Our findings extend the topological phase diagram enormously and make strong topological insulators switchable by distortions or electric fields.
format Online
Article
Text
id pubmed-5645419
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-56454192017-10-19 Topological quantum phase transition from mirror to time reversal symmetry protected topological insulator Mandal, Partha S. Springholz, Gunther Volobuev, Valentine V. Caha, Ondrej Varykhalov, Andrei Golias, Evangelos Bauer, Günther Rader, Oliver Sánchez-Barriga, Jaime Nat Commun Article Topological insulators constitute a new phase of matter protected by symmetries. Time-reversal symmetry protects strong topological insulators of the Z(2) class, which possess an odd number of metallic surface states with dispersion of a Dirac cone. Topological crystalline insulators are merely protected by individual crystal symmetries and exist for an even number of Dirac cones. Here, we demonstrate that Bi-doping of Pb(1−x)Sn(x)Se (111) epilayers induces a quantum phase transition from a topological crystalline insulator to a Z(2) topological insulator. This occurs because Bi-doping lifts the fourfold valley degeneracy and induces a gap at [Formula: see text] , while the three Dirac cones at the [Formula: see text] points of the surface Brillouin zone remain intact. We interpret this new phase transition as caused by a lattice distortion. Our findings extend the topological phase diagram enormously and make strong topological insulators switchable by distortions or electric fields. Nature Publishing Group UK 2017-10-17 /pmc/articles/PMC5645419/ /pubmed/29042565 http://dx.doi.org/10.1038/s41467-017-01204-0 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Mandal, Partha S.
Springholz, Gunther
Volobuev, Valentine V.
Caha, Ondrej
Varykhalov, Andrei
Golias, Evangelos
Bauer, Günther
Rader, Oliver
Sánchez-Barriga, Jaime
Topological quantum phase transition from mirror to time reversal symmetry protected topological insulator
title Topological quantum phase transition from mirror to time reversal symmetry protected topological insulator
title_full Topological quantum phase transition from mirror to time reversal symmetry protected topological insulator
title_fullStr Topological quantum phase transition from mirror to time reversal symmetry protected topological insulator
title_full_unstemmed Topological quantum phase transition from mirror to time reversal symmetry protected topological insulator
title_short Topological quantum phase transition from mirror to time reversal symmetry protected topological insulator
title_sort topological quantum phase transition from mirror to time reversal symmetry protected topological insulator
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5645419/
https://www.ncbi.nlm.nih.gov/pubmed/29042565
http://dx.doi.org/10.1038/s41467-017-01204-0
work_keys_str_mv AT mandalparthas topologicalquantumphasetransitionfrommirrortotimereversalsymmetryprotectedtopologicalinsulator
AT springholzgunther topologicalquantumphasetransitionfrommirrortotimereversalsymmetryprotectedtopologicalinsulator
AT volobuevvalentinev topologicalquantumphasetransitionfrommirrortotimereversalsymmetryprotectedtopologicalinsulator
AT cahaondrej topologicalquantumphasetransitionfrommirrortotimereversalsymmetryprotectedtopologicalinsulator
AT varykhalovandrei topologicalquantumphasetransitionfrommirrortotimereversalsymmetryprotectedtopologicalinsulator
AT goliasevangelos topologicalquantumphasetransitionfrommirrortotimereversalsymmetryprotectedtopologicalinsulator
AT bauergunther topologicalquantumphasetransitionfrommirrortotimereversalsymmetryprotectedtopologicalinsulator
AT raderoliver topologicalquantumphasetransitionfrommirrortotimereversalsymmetryprotectedtopologicalinsulator
AT sanchezbarrigajaime topologicalquantumphasetransitionfrommirrortotimereversalsymmetryprotectedtopologicalinsulator