Cargando…

Lipid polymorphism in chloroplast thylakoid membranes – as revealed by (31)P-NMR and time-resolved merocyanine fluorescence spectroscopy

Chloroplast thylakoid membranes contain virtually all components of the energy-converting photosynthetic machinery. Their energized state, driving ATP synthesis, is enabled by the bilayer organization of the membrane. However, their most abundant lipid species is a non-bilayer-forming lipid, monogal...

Descripción completa

Detalles Bibliográficos
Autores principales: Garab, Győző, Ughy, Bettina, Waard, Pieter de, Akhtar, Parveen, Javornik, Uroš, Kotakis, Christos, Šket, Primož, Karlický, Václav, Materová, Zuzana, Špunda, Vladimír, Plavec, Janez, van Amerongen, Herbert, Vígh, László, As, Henk Van, Lambrev, Petar H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5645462/
https://www.ncbi.nlm.nih.gov/pubmed/29042649
http://dx.doi.org/10.1038/s41598-017-13574-y
_version_ 1783271896554405888
author Garab, Győző
Ughy, Bettina
Waard, Pieter de
Akhtar, Parveen
Javornik, Uroš
Kotakis, Christos
Šket, Primož
Karlický, Václav
Materová, Zuzana
Špunda, Vladimír
Plavec, Janez
van Amerongen, Herbert
Vígh, László
As, Henk Van
Lambrev, Petar H.
author_facet Garab, Győző
Ughy, Bettina
Waard, Pieter de
Akhtar, Parveen
Javornik, Uroš
Kotakis, Christos
Šket, Primož
Karlický, Václav
Materová, Zuzana
Špunda, Vladimír
Plavec, Janez
van Amerongen, Herbert
Vígh, László
As, Henk Van
Lambrev, Petar H.
author_sort Garab, Győző
collection PubMed
description Chloroplast thylakoid membranes contain virtually all components of the energy-converting photosynthetic machinery. Their energized state, driving ATP synthesis, is enabled by the bilayer organization of the membrane. However, their most abundant lipid species is a non-bilayer-forming lipid, monogalactosyl-diacylglycerol; the role of lipid polymorphism in these membranes is poorly understood. Earlier (31)P-NMR experiments revealed the coexistence of a bilayer and a non-bilayer, isotropic lipid phase in spinach thylakoids. Packing of lipid molecules, tested by fluorescence spectroscopy of the lipophilic dye, merocyanine-540 (MC540), also displayed heterogeneity. Now, our (31)P-NMR experiments on spinach thylakoids uncover the presence of a bilayer and three non-bilayer lipid phases; time-resolved fluorescence spectroscopy of MC540 also reveals the presence of multiple lipidic environments. It is also shown by (31)P-NMR that: (i) some lipid phases are sensitive to the osmolarity and ionic strength of the medium, (ii) a lipid phase can be modulated by catalytic hydrogenation of fatty acids and (iii) a marked increase of one of the non-bilayer phases upon lowering the pH of the medium is observed. These data provide additional experimental evidence for the polymorphism of lipid phases in thylakoids and suggest that non-bilayer phases play an active role in the structural dynamics of thylakoid membranes.
format Online
Article
Text
id pubmed-5645462
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-56454622017-10-26 Lipid polymorphism in chloroplast thylakoid membranes – as revealed by (31)P-NMR and time-resolved merocyanine fluorescence spectroscopy Garab, Győző Ughy, Bettina Waard, Pieter de Akhtar, Parveen Javornik, Uroš Kotakis, Christos Šket, Primož Karlický, Václav Materová, Zuzana Špunda, Vladimír Plavec, Janez van Amerongen, Herbert Vígh, László As, Henk Van Lambrev, Petar H. Sci Rep Article Chloroplast thylakoid membranes contain virtually all components of the energy-converting photosynthetic machinery. Their energized state, driving ATP synthesis, is enabled by the bilayer organization of the membrane. However, their most abundant lipid species is a non-bilayer-forming lipid, monogalactosyl-diacylglycerol; the role of lipid polymorphism in these membranes is poorly understood. Earlier (31)P-NMR experiments revealed the coexistence of a bilayer and a non-bilayer, isotropic lipid phase in spinach thylakoids. Packing of lipid molecules, tested by fluorescence spectroscopy of the lipophilic dye, merocyanine-540 (MC540), also displayed heterogeneity. Now, our (31)P-NMR experiments on spinach thylakoids uncover the presence of a bilayer and three non-bilayer lipid phases; time-resolved fluorescence spectroscopy of MC540 also reveals the presence of multiple lipidic environments. It is also shown by (31)P-NMR that: (i) some lipid phases are sensitive to the osmolarity and ionic strength of the medium, (ii) a lipid phase can be modulated by catalytic hydrogenation of fatty acids and (iii) a marked increase of one of the non-bilayer phases upon lowering the pH of the medium is observed. These data provide additional experimental evidence for the polymorphism of lipid phases in thylakoids and suggest that non-bilayer phases play an active role in the structural dynamics of thylakoid membranes. Nature Publishing Group UK 2017-10-17 /pmc/articles/PMC5645462/ /pubmed/29042649 http://dx.doi.org/10.1038/s41598-017-13574-y Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Garab, Győző
Ughy, Bettina
Waard, Pieter de
Akhtar, Parveen
Javornik, Uroš
Kotakis, Christos
Šket, Primož
Karlický, Václav
Materová, Zuzana
Špunda, Vladimír
Plavec, Janez
van Amerongen, Herbert
Vígh, László
As, Henk Van
Lambrev, Petar H.
Lipid polymorphism in chloroplast thylakoid membranes – as revealed by (31)P-NMR and time-resolved merocyanine fluorescence spectroscopy
title Lipid polymorphism in chloroplast thylakoid membranes – as revealed by (31)P-NMR and time-resolved merocyanine fluorescence spectroscopy
title_full Lipid polymorphism in chloroplast thylakoid membranes – as revealed by (31)P-NMR and time-resolved merocyanine fluorescence spectroscopy
title_fullStr Lipid polymorphism in chloroplast thylakoid membranes – as revealed by (31)P-NMR and time-resolved merocyanine fluorescence spectroscopy
title_full_unstemmed Lipid polymorphism in chloroplast thylakoid membranes – as revealed by (31)P-NMR and time-resolved merocyanine fluorescence spectroscopy
title_short Lipid polymorphism in chloroplast thylakoid membranes – as revealed by (31)P-NMR and time-resolved merocyanine fluorescence spectroscopy
title_sort lipid polymorphism in chloroplast thylakoid membranes – as revealed by (31)p-nmr and time-resolved merocyanine fluorescence spectroscopy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5645462/
https://www.ncbi.nlm.nih.gov/pubmed/29042649
http://dx.doi.org/10.1038/s41598-017-13574-y
work_keys_str_mv AT garabgyozo lipidpolymorphisminchloroplastthylakoidmembranesasrevealedby31pnmrandtimeresolvedmerocyaninefluorescencespectroscopy
AT ughybettina lipidpolymorphisminchloroplastthylakoidmembranesasrevealedby31pnmrandtimeresolvedmerocyaninefluorescencespectroscopy
AT waardpieterde lipidpolymorphisminchloroplastthylakoidmembranesasrevealedby31pnmrandtimeresolvedmerocyaninefluorescencespectroscopy
AT akhtarparveen lipidpolymorphisminchloroplastthylakoidmembranesasrevealedby31pnmrandtimeresolvedmerocyaninefluorescencespectroscopy
AT javornikuros lipidpolymorphisminchloroplastthylakoidmembranesasrevealedby31pnmrandtimeresolvedmerocyaninefluorescencespectroscopy
AT kotakischristos lipidpolymorphisminchloroplastthylakoidmembranesasrevealedby31pnmrandtimeresolvedmerocyaninefluorescencespectroscopy
AT sketprimoz lipidpolymorphisminchloroplastthylakoidmembranesasrevealedby31pnmrandtimeresolvedmerocyaninefluorescencespectroscopy
AT karlickyvaclav lipidpolymorphisminchloroplastthylakoidmembranesasrevealedby31pnmrandtimeresolvedmerocyaninefluorescencespectroscopy
AT materovazuzana lipidpolymorphisminchloroplastthylakoidmembranesasrevealedby31pnmrandtimeresolvedmerocyaninefluorescencespectroscopy
AT spundavladimir lipidpolymorphisminchloroplastthylakoidmembranesasrevealedby31pnmrandtimeresolvedmerocyaninefluorescencespectroscopy
AT plavecjanez lipidpolymorphisminchloroplastthylakoidmembranesasrevealedby31pnmrandtimeresolvedmerocyaninefluorescencespectroscopy
AT vanamerongenherbert lipidpolymorphisminchloroplastthylakoidmembranesasrevealedby31pnmrandtimeresolvedmerocyaninefluorescencespectroscopy
AT vighlaszlo lipidpolymorphisminchloroplastthylakoidmembranesasrevealedby31pnmrandtimeresolvedmerocyaninefluorescencespectroscopy
AT ashenkvan lipidpolymorphisminchloroplastthylakoidmembranesasrevealedby31pnmrandtimeresolvedmerocyaninefluorescencespectroscopy
AT lambrevpetarh lipidpolymorphisminchloroplastthylakoidmembranesasrevealedby31pnmrandtimeresolvedmerocyaninefluorescencespectroscopy