Cargando…
Ceftriaxone- and N-acetylcysteine-induced brain tolerance to ischemia: Influence on glutamate levels in focal cerebral ischemia
One of the major players in the pathophysiology of cerebral ischemia is disrupted homeostasis of glutamatergic neurotransmission, resulting in elevated extracellular glutamate (Glu) concentrations and excitotoxicity-related cell death. In the brain, Glu concentrations are regulated by Glu transporte...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5646803/ https://www.ncbi.nlm.nih.gov/pubmed/29045497 http://dx.doi.org/10.1371/journal.pone.0186243 |
_version_ | 1783272150635905024 |
---|---|
author | Krzyżanowska, Weronika Pomierny, Bartosz Bystrowska, Beata Pomierny-Chamioło, Lucyna Filip, Małgorzata Budziszewska, Bogusława Pera, Joanna |
author_facet | Krzyżanowska, Weronika Pomierny, Bartosz Bystrowska, Beata Pomierny-Chamioło, Lucyna Filip, Małgorzata Budziszewska, Bogusława Pera, Joanna |
author_sort | Krzyżanowska, Weronika |
collection | PubMed |
description | One of the major players in the pathophysiology of cerebral ischemia is disrupted homeostasis of glutamatergic neurotransmission, resulting in elevated extracellular glutamate (Glu) concentrations and excitotoxicity-related cell death. In the brain, Glu concentrations are regulated by Glu transporters, including Glu transporter-1 (GLT-1) and cystine/Glu antiporter (system x(c)(-)). Modulation of these transporters by administration of ceftriaxone (CEF, 200 mg/kg, i.p.) or N-acetylcysteine (NAC, 150 mg/kg, i.p.) for 5 days before focal cerebral ischemia may induce brain tolerance to ischemia by significantly limiting stroke-related damage and normalizing Glu concentrations. In the present study, focal cerebral ischemia was induced by 90-minute middle cerebral artery occlusion (MCAO). We compared the effects of CEF and NAC pretreatment on Glu concentrations in extracellular fluid and cellular-specific expression of GLT-1 and xCT with the effects of two reference preconditioning methods, namely, ischemic preconditioning and chemical preconditioning in rats. Both CEF and NAC significantly reduced Glu levels in the frontal cortex and hippocampus during focal cerebral ischemia, and this decrease was comparable with the Glu level achieved with the reference preconditioning strategies. The results of immunofluorescence staining of GLT-1 and xCT on astrocytes, neurons and microglia accounted for the observed changes in extracellular Glu levels to a certain extent. Briefly, after MCAO, the expression of GLT-1 on astrocytes decreased, but pretreatment with CEF seemed to prevent this downregulation. In addition, every intervention used in this study seemed to reduce xCT expression on astrocytes and neurons. The results of this study indicate that modulation of Glu transporter expression may restore Glu homeostasis. Moreover, our results suggest that CEF and NAC may induce brain tolerance to ischemia by influencing GLT-1 and system x(c)(-) expression levels. These transporters are presumably good targets for the development of novel therapies for brain ischemia. |
format | Online Article Text |
id | pubmed-5646803 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-56468032017-10-30 Ceftriaxone- and N-acetylcysteine-induced brain tolerance to ischemia: Influence on glutamate levels in focal cerebral ischemia Krzyżanowska, Weronika Pomierny, Bartosz Bystrowska, Beata Pomierny-Chamioło, Lucyna Filip, Małgorzata Budziszewska, Bogusława Pera, Joanna PLoS One Research Article One of the major players in the pathophysiology of cerebral ischemia is disrupted homeostasis of glutamatergic neurotransmission, resulting in elevated extracellular glutamate (Glu) concentrations and excitotoxicity-related cell death. In the brain, Glu concentrations are regulated by Glu transporters, including Glu transporter-1 (GLT-1) and cystine/Glu antiporter (system x(c)(-)). Modulation of these transporters by administration of ceftriaxone (CEF, 200 mg/kg, i.p.) or N-acetylcysteine (NAC, 150 mg/kg, i.p.) for 5 days before focal cerebral ischemia may induce brain tolerance to ischemia by significantly limiting stroke-related damage and normalizing Glu concentrations. In the present study, focal cerebral ischemia was induced by 90-minute middle cerebral artery occlusion (MCAO). We compared the effects of CEF and NAC pretreatment on Glu concentrations in extracellular fluid and cellular-specific expression of GLT-1 and xCT with the effects of two reference preconditioning methods, namely, ischemic preconditioning and chemical preconditioning in rats. Both CEF and NAC significantly reduced Glu levels in the frontal cortex and hippocampus during focal cerebral ischemia, and this decrease was comparable with the Glu level achieved with the reference preconditioning strategies. The results of immunofluorescence staining of GLT-1 and xCT on astrocytes, neurons and microglia accounted for the observed changes in extracellular Glu levels to a certain extent. Briefly, after MCAO, the expression of GLT-1 on astrocytes decreased, but pretreatment with CEF seemed to prevent this downregulation. In addition, every intervention used in this study seemed to reduce xCT expression on astrocytes and neurons. The results of this study indicate that modulation of Glu transporter expression may restore Glu homeostasis. Moreover, our results suggest that CEF and NAC may induce brain tolerance to ischemia by influencing GLT-1 and system x(c)(-) expression levels. These transporters are presumably good targets for the development of novel therapies for brain ischemia. Public Library of Science 2017-10-18 /pmc/articles/PMC5646803/ /pubmed/29045497 http://dx.doi.org/10.1371/journal.pone.0186243 Text en © 2017 Krzyżanowska et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Krzyżanowska, Weronika Pomierny, Bartosz Bystrowska, Beata Pomierny-Chamioło, Lucyna Filip, Małgorzata Budziszewska, Bogusława Pera, Joanna Ceftriaxone- and N-acetylcysteine-induced brain tolerance to ischemia: Influence on glutamate levels in focal cerebral ischemia |
title | Ceftriaxone- and N-acetylcysteine-induced brain tolerance to ischemia: Influence on glutamate levels in focal cerebral ischemia |
title_full | Ceftriaxone- and N-acetylcysteine-induced brain tolerance to ischemia: Influence on glutamate levels in focal cerebral ischemia |
title_fullStr | Ceftriaxone- and N-acetylcysteine-induced brain tolerance to ischemia: Influence on glutamate levels in focal cerebral ischemia |
title_full_unstemmed | Ceftriaxone- and N-acetylcysteine-induced brain tolerance to ischemia: Influence on glutamate levels in focal cerebral ischemia |
title_short | Ceftriaxone- and N-acetylcysteine-induced brain tolerance to ischemia: Influence on glutamate levels in focal cerebral ischemia |
title_sort | ceftriaxone- and n-acetylcysteine-induced brain tolerance to ischemia: influence on glutamate levels in focal cerebral ischemia |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5646803/ https://www.ncbi.nlm.nih.gov/pubmed/29045497 http://dx.doi.org/10.1371/journal.pone.0186243 |
work_keys_str_mv | AT krzyzanowskaweronika ceftriaxoneandnacetylcysteineinducedbraintolerancetoischemiainfluenceonglutamatelevelsinfocalcerebralischemia AT pomiernybartosz ceftriaxoneandnacetylcysteineinducedbraintolerancetoischemiainfluenceonglutamatelevelsinfocalcerebralischemia AT bystrowskabeata ceftriaxoneandnacetylcysteineinducedbraintolerancetoischemiainfluenceonglutamatelevelsinfocalcerebralischemia AT pomiernychamiołolucyna ceftriaxoneandnacetylcysteineinducedbraintolerancetoischemiainfluenceonglutamatelevelsinfocalcerebralischemia AT filipmałgorzata ceftriaxoneandnacetylcysteineinducedbraintolerancetoischemiainfluenceonglutamatelevelsinfocalcerebralischemia AT budziszewskabogusława ceftriaxoneandnacetylcysteineinducedbraintolerancetoischemiainfluenceonglutamatelevelsinfocalcerebralischemia AT perajoanna ceftriaxoneandnacetylcysteineinducedbraintolerancetoischemiainfluenceonglutamatelevelsinfocalcerebralischemia |