Cargando…
Discovery by organism based high-throughput screening of new multi-stage compounds affecting Schistosoma mansoni viability, egg formation and production
Schistosomiasis, one of the most prevalent neglected parasitic diseases affecting humans and animals, is caused by the Platyhelminthes of the genus Schistosoma. Schistosomes are the only trematodes to have evolved sexual dimorphism and the constant pairing with a male is essential for the sexual mat...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5646872/ https://www.ncbi.nlm.nih.gov/pubmed/28985236 http://dx.doi.org/10.1371/journal.pntd.0005994 |
_version_ | 1783272162939895808 |
---|---|
author | Guidi, Alessandra Lalli, Cristiana Gimmelli, Roberto Nizi, Emanuela Andreini, Matteo Gennari, Nadia Saccoccia, Fulvio Harper, Steven Bresciani, Alberto Ruberti, Giovina |
author_facet | Guidi, Alessandra Lalli, Cristiana Gimmelli, Roberto Nizi, Emanuela Andreini, Matteo Gennari, Nadia Saccoccia, Fulvio Harper, Steven Bresciani, Alberto Ruberti, Giovina |
author_sort | Guidi, Alessandra |
collection | PubMed |
description | Schistosomiasis, one of the most prevalent neglected parasitic diseases affecting humans and animals, is caused by the Platyhelminthes of the genus Schistosoma. Schistosomes are the only trematodes to have evolved sexual dimorphism and the constant pairing with a male is essential for the sexual maturation of the female. Pairing is required for the full development of the two major female organs, ovary and vitellarium that are involved in the production of different cell types such as oocytes and vitellocytes, which represent the core elements of the whole egg machinery. Sexually mature females can produce a large number of eggs each day. Due to the importance of egg production for both life cycle and pathogenesis, there is significant interest in the search for new strategies and compounds not only affecting parasite viability but also egg production. Here we use a recently developed high-throughput organism-based approach, based on ATP quantitation in the schistosomula larval stage of Schistosoma mansoni for the screening of a large compound library, and describe a pharmacophore-based drug selection approach and phenotypic analyses to identify novel multi-stage schistosomicidal compounds. Interestingly, worm pairs treated with seven of the eight compounds identified show a phenotype characterized by defects in eggshell assemblage within the ootype and egg formation with degenerated oocytes and vitelline cells engulfment in the uterus and/or oviduct. We describe promising new molecules that not only impair the schistosomula larval stage but also impact juvenile and adult worm viability and egg formation and production in vitro. |
format | Online Article Text |
id | pubmed-5646872 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-56468722017-10-30 Discovery by organism based high-throughput screening of new multi-stage compounds affecting Schistosoma mansoni viability, egg formation and production Guidi, Alessandra Lalli, Cristiana Gimmelli, Roberto Nizi, Emanuela Andreini, Matteo Gennari, Nadia Saccoccia, Fulvio Harper, Steven Bresciani, Alberto Ruberti, Giovina PLoS Negl Trop Dis Research Article Schistosomiasis, one of the most prevalent neglected parasitic diseases affecting humans and animals, is caused by the Platyhelminthes of the genus Schistosoma. Schistosomes are the only trematodes to have evolved sexual dimorphism and the constant pairing with a male is essential for the sexual maturation of the female. Pairing is required for the full development of the two major female organs, ovary and vitellarium that are involved in the production of different cell types such as oocytes and vitellocytes, which represent the core elements of the whole egg machinery. Sexually mature females can produce a large number of eggs each day. Due to the importance of egg production for both life cycle and pathogenesis, there is significant interest in the search for new strategies and compounds not only affecting parasite viability but also egg production. Here we use a recently developed high-throughput organism-based approach, based on ATP quantitation in the schistosomula larval stage of Schistosoma mansoni for the screening of a large compound library, and describe a pharmacophore-based drug selection approach and phenotypic analyses to identify novel multi-stage schistosomicidal compounds. Interestingly, worm pairs treated with seven of the eight compounds identified show a phenotype characterized by defects in eggshell assemblage within the ootype and egg formation with degenerated oocytes and vitelline cells engulfment in the uterus and/or oviduct. We describe promising new molecules that not only impair the schistosomula larval stage but also impact juvenile and adult worm viability and egg formation and production in vitro. Public Library of Science 2017-10-06 /pmc/articles/PMC5646872/ /pubmed/28985236 http://dx.doi.org/10.1371/journal.pntd.0005994 Text en © 2017 Guidi et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Guidi, Alessandra Lalli, Cristiana Gimmelli, Roberto Nizi, Emanuela Andreini, Matteo Gennari, Nadia Saccoccia, Fulvio Harper, Steven Bresciani, Alberto Ruberti, Giovina Discovery by organism based high-throughput screening of new multi-stage compounds affecting Schistosoma mansoni viability, egg formation and production |
title | Discovery by organism based high-throughput screening of new multi-stage compounds affecting Schistosoma mansoni viability, egg formation and production |
title_full | Discovery by organism based high-throughput screening of new multi-stage compounds affecting Schistosoma mansoni viability, egg formation and production |
title_fullStr | Discovery by organism based high-throughput screening of new multi-stage compounds affecting Schistosoma mansoni viability, egg formation and production |
title_full_unstemmed | Discovery by organism based high-throughput screening of new multi-stage compounds affecting Schistosoma mansoni viability, egg formation and production |
title_short | Discovery by organism based high-throughput screening of new multi-stage compounds affecting Schistosoma mansoni viability, egg formation and production |
title_sort | discovery by organism based high-throughput screening of new multi-stage compounds affecting schistosoma mansoni viability, egg formation and production |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5646872/ https://www.ncbi.nlm.nih.gov/pubmed/28985236 http://dx.doi.org/10.1371/journal.pntd.0005994 |
work_keys_str_mv | AT guidialessandra discoverybyorganismbasedhighthroughputscreeningofnewmultistagecompoundsaffectingschistosomamansoniviabilityeggformationandproduction AT lallicristiana discoverybyorganismbasedhighthroughputscreeningofnewmultistagecompoundsaffectingschistosomamansoniviabilityeggformationandproduction AT gimmelliroberto discoverybyorganismbasedhighthroughputscreeningofnewmultistagecompoundsaffectingschistosomamansoniviabilityeggformationandproduction AT niziemanuela discoverybyorganismbasedhighthroughputscreeningofnewmultistagecompoundsaffectingschistosomamansoniviabilityeggformationandproduction AT andreinimatteo discoverybyorganismbasedhighthroughputscreeningofnewmultistagecompoundsaffectingschistosomamansoniviabilityeggformationandproduction AT gennarinadia discoverybyorganismbasedhighthroughputscreeningofnewmultistagecompoundsaffectingschistosomamansoniviabilityeggformationandproduction AT saccocciafulvio discoverybyorganismbasedhighthroughputscreeningofnewmultistagecompoundsaffectingschistosomamansoniviabilityeggformationandproduction AT harpersteven discoverybyorganismbasedhighthroughputscreeningofnewmultistagecompoundsaffectingschistosomamansoniviabilityeggformationandproduction AT brescianialberto discoverybyorganismbasedhighthroughputscreeningofnewmultistagecompoundsaffectingschistosomamansoniviabilityeggformationandproduction AT rubertigiovina discoverybyorganismbasedhighthroughputscreeningofnewmultistagecompoundsaffectingschistosomamansoniviabilityeggformationandproduction |