Cargando…

Sanggenon C protects against pressure overload-induced cardiac hypertrophy via the calcineurin/NFAT2 pathway

The effects of Sanggenon C on oxidative stress and inflammation have previously been reported; however, little is currently known regarding the effects of Sanggenon C on cardiac hypertrophy and fibrosis. In the present study, aortic banding (AB) was performed on mice to induce cardiac hypertrophy. A...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiao, Lili, Gu, Yulei, Gao, Lu, Shangguan, Jiahong, Chen, Yang, Zhang, Yanzhou, Li, Ling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5647066/
https://www.ncbi.nlm.nih.gov/pubmed/28849031
http://dx.doi.org/10.3892/mmr.2017.7288
Descripción
Sumario:The effects of Sanggenon C on oxidative stress and inflammation have previously been reported; however, little is currently known regarding the effects of Sanggenon C on cardiac hypertrophy and fibrosis. In the present study, aortic banding (AB) was performed on mice to induce cardiac hypertrophy. After 1 week AB surgery, mice were treated daily with 10 or 20 mg/kg Sanggenon C for 3 weeks. Subsequently, cardiac function was detected using echocardiography and catheter-based measurements of hemodynamic parameters. In addition, the extent of cardiac hypertrophy was evaluated by pathological staining and molecular analysis of heart tissue in each group. After 4 weeks of AB, vehicle-treated mice exhibited cardiac hypertrophy, fibrosis, and deteriorated systolic and diastolic function, whereas treatment with 10 and 20 mg/kg Sanggenon C treatment ameliorated these alterations, as evidenced by attenuated cardiac hypertrophy and fibrosis, and preserved cardiac function. Furthermore, AB-induced activation of calcineurin and nuclear factor of activated T cells 2 (NFAT2) was reduced following Sanggenon C treatment. These results suggest that Sanggenon C may exert protective effects against cardiac hypertrophy and fibrosis via suppression of the calcineurin/NFAT2 pathway.