Cargando…

Impact of heavy metal lead stress on polyamine levels in Halomonas BVR 1 isolated from an industry effluent

In living systems, environmental stress due to biotic and abiotic factors triggers the production of myriad metabolites as a potential mechanism for combating stress. Among these metabolites are the small polycationic aliphatic amine molecules - polyamines, which are ubiquitous in all living organis...

Descripción completa

Detalles Bibliográficos
Autores principales: Manasi, Mohapatra, Sridev, Rajesh, N., Rajesh, Vidya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5647450/
https://www.ncbi.nlm.nih.gov/pubmed/29044167
http://dx.doi.org/10.1038/s41598-017-13893-0
Descripción
Sumario:In living systems, environmental stress due to biotic and abiotic factors triggers the production of myriad metabolites as a potential mechanism for combating stress. Among these metabolites are the small polycationic aliphatic amine molecules - polyamines, which are ubiquitous in all living organisms. In this work, we demonstrate a correlation between cellular concentration of three major polyamines (putrescine, spermidine and spermine) with lead exposure on bacteria for a period of 6–24 h. We report that indigenously isolated Halomonas sp. strain BVR 1 exhibits lead induced fluctuations in their cellular polyamine concentration. This response to lead occurs within 6 h post metal treatment. During the same time interval there was a surge in the growth of bacteria along with an enhancement in the putrescine levels. We conclude that in Halomonas sp. strain BVR 1, an early response is seen with respect to modulation of polyamines as a result of lead treatment and hypothesize that endogenous polyamines contribute towards scavenging lead in these bacteria.