Cargando…

Monitoring Microbial Mineralization Using Reverse Stable Isotope Labeling Analysis by Mid-Infrared Laser Spectroscopy

[Image: see text] Assessing the biodegradation of organic compounds is a frequent question in environmental science. Here, we present a sensitive, inexpensive, and simple approach to monitor microbial mineralization using reverse stable isotope labeling analysis (RIL) of dissolved inorganic carbon (...

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Xiyang, Jochmann, Maik A., Elsner, Martin, Meyer, Armin H., Bäcker, Leonard E., Rahmatullah, Mona, Schunk, Daniel, Lens, Guido, Meckenstock, Rainer U.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2017
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5647565/
https://www.ncbi.nlm.nih.gov/pubmed/28903553
http://dx.doi.org/10.1021/acs.est.7b02909
_version_ 1783272271822979072
author Dong, Xiyang
Jochmann, Maik A.
Elsner, Martin
Meyer, Armin H.
Bäcker, Leonard E.
Rahmatullah, Mona
Schunk, Daniel
Lens, Guido
Meckenstock, Rainer U.
author_facet Dong, Xiyang
Jochmann, Maik A.
Elsner, Martin
Meyer, Armin H.
Bäcker, Leonard E.
Rahmatullah, Mona
Schunk, Daniel
Lens, Guido
Meckenstock, Rainer U.
author_sort Dong, Xiyang
collection PubMed
description [Image: see text] Assessing the biodegradation of organic compounds is a frequent question in environmental science. Here, we present a sensitive, inexpensive, and simple approach to monitor microbial mineralization using reverse stable isotope labeling analysis (RIL) of dissolved inorganic carbon (DIC). The medium for the biodegradation assay contains regular organic compounds and (13)C-labeled DIC with (13)C atom fractions (x((13)C)(DIC)) higher than natural abundance (typically 2–50%). The produced CO(2) (x((13)C) ≈ 1.11%) gradually dilutes the initial x((13)C)(DIC) allowing to quantify microbial mineralization using mass-balance calculations. For (13)C-enriched CO(2) samples, a newly developed isotope ratio mid-infrared spectrometer was introduced with a precision of x((13)C) < 0.006%. As an example for extremely difficult and slowly degradable compounds, CO(2) production was close to the theoretical stoichiometry for anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Furthermore, we could measure the aerobic degradation of dissolved organic carbon (DOC) adsorbed to granular activated carbon in a drinking water production plant, which cannot be labeled with (13)C. Thus, the RIL approach can be applied to sensitively monitor biodegradation of various organic compounds under anoxic or oxic conditions.
format Online
Article
Text
id pubmed-5647565
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-56475652017-10-22 Monitoring Microbial Mineralization Using Reverse Stable Isotope Labeling Analysis by Mid-Infrared Laser Spectroscopy Dong, Xiyang Jochmann, Maik A. Elsner, Martin Meyer, Armin H. Bäcker, Leonard E. Rahmatullah, Mona Schunk, Daniel Lens, Guido Meckenstock, Rainer U. Environ Sci Technol [Image: see text] Assessing the biodegradation of organic compounds is a frequent question in environmental science. Here, we present a sensitive, inexpensive, and simple approach to monitor microbial mineralization using reverse stable isotope labeling analysis (RIL) of dissolved inorganic carbon (DIC). The medium for the biodegradation assay contains regular organic compounds and (13)C-labeled DIC with (13)C atom fractions (x((13)C)(DIC)) higher than natural abundance (typically 2–50%). The produced CO(2) (x((13)C) ≈ 1.11%) gradually dilutes the initial x((13)C)(DIC) allowing to quantify microbial mineralization using mass-balance calculations. For (13)C-enriched CO(2) samples, a newly developed isotope ratio mid-infrared spectrometer was introduced with a precision of x((13)C) < 0.006%. As an example for extremely difficult and slowly degradable compounds, CO(2) production was close to the theoretical stoichiometry for anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Furthermore, we could measure the aerobic degradation of dissolved organic carbon (DOC) adsorbed to granular activated carbon in a drinking water production plant, which cannot be labeled with (13)C. Thus, the RIL approach can be applied to sensitively monitor biodegradation of various organic compounds under anoxic or oxic conditions. American Chemical Society 2017-09-14 2017-10-17 /pmc/articles/PMC5647565/ /pubmed/28903553 http://dx.doi.org/10.1021/acs.est.7b02909 Text en Copyright © 2017 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Dong, Xiyang
Jochmann, Maik A.
Elsner, Martin
Meyer, Armin H.
Bäcker, Leonard E.
Rahmatullah, Mona
Schunk, Daniel
Lens, Guido
Meckenstock, Rainer U.
Monitoring Microbial Mineralization Using Reverse Stable Isotope Labeling Analysis by Mid-Infrared Laser Spectroscopy
title Monitoring Microbial Mineralization Using Reverse Stable Isotope Labeling Analysis by Mid-Infrared Laser Spectroscopy
title_full Monitoring Microbial Mineralization Using Reverse Stable Isotope Labeling Analysis by Mid-Infrared Laser Spectroscopy
title_fullStr Monitoring Microbial Mineralization Using Reverse Stable Isotope Labeling Analysis by Mid-Infrared Laser Spectroscopy
title_full_unstemmed Monitoring Microbial Mineralization Using Reverse Stable Isotope Labeling Analysis by Mid-Infrared Laser Spectroscopy
title_short Monitoring Microbial Mineralization Using Reverse Stable Isotope Labeling Analysis by Mid-Infrared Laser Spectroscopy
title_sort monitoring microbial mineralization using reverse stable isotope labeling analysis by mid-infrared laser spectroscopy
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5647565/
https://www.ncbi.nlm.nih.gov/pubmed/28903553
http://dx.doi.org/10.1021/acs.est.7b02909
work_keys_str_mv AT dongxiyang monitoringmicrobialmineralizationusingreversestableisotopelabelinganalysisbymidinfraredlaserspectroscopy
AT jochmannmaika monitoringmicrobialmineralizationusingreversestableisotopelabelinganalysisbymidinfraredlaserspectroscopy
AT elsnermartin monitoringmicrobialmineralizationusingreversestableisotopelabelinganalysisbymidinfraredlaserspectroscopy
AT meyerarminh monitoringmicrobialmineralizationusingreversestableisotopelabelinganalysisbymidinfraredlaserspectroscopy
AT backerleonarde monitoringmicrobialmineralizationusingreversestableisotopelabelinganalysisbymidinfraredlaserspectroscopy
AT rahmatullahmona monitoringmicrobialmineralizationusingreversestableisotopelabelinganalysisbymidinfraredlaserspectroscopy
AT schunkdaniel monitoringmicrobialmineralizationusingreversestableisotopelabelinganalysisbymidinfraredlaserspectroscopy
AT lensguido monitoringmicrobialmineralizationusingreversestableisotopelabelinganalysisbymidinfraredlaserspectroscopy
AT meckenstockraineru monitoringmicrobialmineralizationusingreversestableisotopelabelinganalysisbymidinfraredlaserspectroscopy