Cargando…

Magnetic resonance spectroscopy for assessment of brain injury in the rat model of sepsis

The diagnostic value of magnetic resonance spectroscopy (MRS), T2-weighted imaging (T2WI) and serum markers of brain injury in a rat model of sepsis were investigated. Rats were randomly divided into the control group and 6, 12 and 24 h after lipopolysaccharide-injection groups. Brain morphology and...

Descripción completa

Detalles Bibliográficos
Autores principales: Wen, Miaoyun, Lian, Zhesi, Huang, Linqiang, Zhu, Senzhi, Hu, Bei, Han, Yongli, Deng, Yiyu, Zeng, Hongke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5647722/
https://www.ncbi.nlm.nih.gov/pubmed/29067103
http://dx.doi.org/10.3892/etm.2017.5034
Descripción
Sumario:The diagnostic value of magnetic resonance spectroscopy (MRS), T2-weighted imaging (T2WI) and serum markers of brain injury in a rat model of sepsis were investigated. Rats were randomly divided into the control group and 6, 12 and 24 h after lipopolysaccharide-injection groups. Brain morphology and metabolism were assessed with T2WI magnetic resonance imaging (MRI) and MRS. Serum and brain tissue samples were then collected to examine the concentrations of neuron-specific enolase (NSE) and S100-β protein. Brain T2WI showed no differences between the groups. N-acetylaspartate/choline (NAA/Cr) ratio measured by MRS showed different degrees of decrease in the sepsis groups, and serum NSE and S100-β concentrations were increased compared with the control group. Apoptosis rates were measured in the right hippocampal area, and there were statistically significant differences between the indicated groups and the control group (p<0.05). The correlation between apoptosis rate and NAA/Cr ratio was closer than that between apoptosis rate and NSE or S100-β (−0.925 vs. 0.434 vs. 0.517, respectively). In conclusion, MRS is a sensitive, non-invasive method to investigate complications of brain injury in septic rats, which may be utilized for the early diagnosis of brain injury caused by sepsis.