Cargando…
Multiplexed Optical Imaging of Tumor-Directed Nanoparticles: A Review of Imaging Systems and Approaches
In recent decades, various classes of nanoparticles have been developed for optical imaging of cancers. Many of these nanoparticles are designed to specifically target tumor sites, and specific cancer biomarkers, to facilitate the visualization of tumors. However, one challenge for accurate detectio...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5647764/ https://www.ncbi.nlm.nih.gov/pubmed/29071200 http://dx.doi.org/10.7150/ntno.21136 |
_version_ | 1783272300067422208 |
---|---|
author | Wang, Yu Winston Reder, Nicholas P. Kang, Soyoung Glaser, Adam K. Liu, Jonathan T.C. |
author_facet | Wang, Yu Winston Reder, Nicholas P. Kang, Soyoung Glaser, Adam K. Liu, Jonathan T.C. |
author_sort | Wang, Yu Winston |
collection | PubMed |
description | In recent decades, various classes of nanoparticles have been developed for optical imaging of cancers. Many of these nanoparticles are designed to specifically target tumor sites, and specific cancer biomarkers, to facilitate the visualization of tumors. However, one challenge for accurate detection of tumors is that the molecular profiles of most cancers vary greatly between patients as well as spatially and temporally within a single tumor mass. To overcome this challenge, certain nanoparticles and imaging systems have been developed to enable multiplexed imaging of large panels of cancer biomarkers. Multiplexed molecular imaging can potentially enable sensitive tumor detection, precise delineation of tumors during interventional procedures, and the prediction/monitoring of therapy response. In this review, we summarize recent advances in systems that have been developed for the imaging of optical nanoparticles that can be heavily multiplexed, which include surface-enhanced Raman-scattering nanoparticles (SERS NPs) and quantum dots (QDs). In addition to surveying the optical properties of these various types of nanoparticles, and the most-popular multiplexed imaging approaches that have been employed, representative preclinical and clinical imaging studies are also highlighted. |
format | Online Article Text |
id | pubmed-5647764 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-56477642017-10-25 Multiplexed Optical Imaging of Tumor-Directed Nanoparticles: A Review of Imaging Systems and Approaches Wang, Yu Winston Reder, Nicholas P. Kang, Soyoung Glaser, Adam K. Liu, Jonathan T.C. Nanotheranostics Review In recent decades, various classes of nanoparticles have been developed for optical imaging of cancers. Many of these nanoparticles are designed to specifically target tumor sites, and specific cancer biomarkers, to facilitate the visualization of tumors. However, one challenge for accurate detection of tumors is that the molecular profiles of most cancers vary greatly between patients as well as spatially and temporally within a single tumor mass. To overcome this challenge, certain nanoparticles and imaging systems have been developed to enable multiplexed imaging of large panels of cancer biomarkers. Multiplexed molecular imaging can potentially enable sensitive tumor detection, precise delineation of tumors during interventional procedures, and the prediction/monitoring of therapy response. In this review, we summarize recent advances in systems that have been developed for the imaging of optical nanoparticles that can be heavily multiplexed, which include surface-enhanced Raman-scattering nanoparticles (SERS NPs) and quantum dots (QDs). In addition to surveying the optical properties of these various types of nanoparticles, and the most-popular multiplexed imaging approaches that have been employed, representative preclinical and clinical imaging studies are also highlighted. Ivyspring International Publisher 2017-08-19 /pmc/articles/PMC5647764/ /pubmed/29071200 http://dx.doi.org/10.7150/ntno.21136 Text en © Ivyspring International Publisher This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. |
spellingShingle | Review Wang, Yu Winston Reder, Nicholas P. Kang, Soyoung Glaser, Adam K. Liu, Jonathan T.C. Multiplexed Optical Imaging of Tumor-Directed Nanoparticles: A Review of Imaging Systems and Approaches |
title | Multiplexed Optical Imaging of Tumor-Directed Nanoparticles: A Review of Imaging Systems and Approaches |
title_full | Multiplexed Optical Imaging of Tumor-Directed Nanoparticles: A Review of Imaging Systems and Approaches |
title_fullStr | Multiplexed Optical Imaging of Tumor-Directed Nanoparticles: A Review of Imaging Systems and Approaches |
title_full_unstemmed | Multiplexed Optical Imaging of Tumor-Directed Nanoparticles: A Review of Imaging Systems and Approaches |
title_short | Multiplexed Optical Imaging of Tumor-Directed Nanoparticles: A Review of Imaging Systems and Approaches |
title_sort | multiplexed optical imaging of tumor-directed nanoparticles: a review of imaging systems and approaches |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5647764/ https://www.ncbi.nlm.nih.gov/pubmed/29071200 http://dx.doi.org/10.7150/ntno.21136 |
work_keys_str_mv | AT wangyuwinston multiplexedopticalimagingoftumordirectednanoparticlesareviewofimagingsystemsandapproaches AT redernicholasp multiplexedopticalimagingoftumordirectednanoparticlesareviewofimagingsystemsandapproaches AT kangsoyoung multiplexedopticalimagingoftumordirectednanoparticlesareviewofimagingsystemsandapproaches AT glaseradamk multiplexedopticalimagingoftumordirectednanoparticlesareviewofimagingsystemsandapproaches AT liujonathantc multiplexedopticalimagingoftumordirectednanoparticlesareviewofimagingsystemsandapproaches |