Cargando…

Impact of Clinical Parameters in the Intrahost Evolution of HIV-1 Subtype B in Pediatric Patients: A Machine Learning Approach

Determining the factors modulating the genetic diversity of HIV-1 populations is essential to understand viral evolution. This study analyzes the relative importance of clinical factors in the intrahost HIV-1 subtype B (HIV-1B) evolution and in the fixation of drug resistance mutations (DRM) during...

Descripción completa

Detalles Bibliográficos
Autores principales: Rojas Sánchez, Patricia, Cobos, Alberto, Navaro, Marisa, Ramos, José Tomas, Pagán, Israel, Holguín, África
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5647794/
https://www.ncbi.nlm.nih.gov/pubmed/29044435
http://dx.doi.org/10.1093/gbe/evx193
_version_ 1783272301301596160
author Rojas Sánchez, Patricia
Cobos, Alberto
Navaro, Marisa
Ramos, José Tomas
Pagán, Israel
Holguín, África
author_facet Rojas Sánchez, Patricia
Cobos, Alberto
Navaro, Marisa
Ramos, José Tomas
Pagán, Israel
Holguín, África
author_sort Rojas Sánchez, Patricia
collection PubMed
description Determining the factors modulating the genetic diversity of HIV-1 populations is essential to understand viral evolution. This study analyzes the relative importance of clinical factors in the intrahost HIV-1 subtype B (HIV-1B) evolution and in the fixation of drug resistance mutations (DRM) during longitudinal pediatric HIV-1 infection. We recovered 162 partial HIV-1B pol sequences (from 3 to 24 per patient) from 24 perinatally infected patients from the Madrid Cohort of HIV-1 infected children and adolescents in a time interval ranging from 2.2 to 20.3 years. We applied machine learning classification methods to analyze the relative importance of 28 clinical/epidemiological/virological factors in the HIV-1B evolution to predict HIV-1B genetic diversity (d), nonsynonymous and synonymous mutations (d(N), d(S)) and DRM presence. Most of the 24 HIV-1B infected pediatric patients were Spanish (91.7%), diagnosed before 2000 (83.3%), and all were antiretroviral therapy experienced. They had from 0.3 to 18.8 years of HIV-1 exposure at sampling time. Most sequences presented DRM. The best-predictor variables for HIV-1B evolutionary parameters were the age of HIV-1 diagnosis for d, the age at first antiretroviral treatment for d(N) and the year of HIV-1 diagnosis for d(s). The year of infection (birth year) and year of sampling seemed to be relevant for fixation of both DRM at large and, considering drug families, to protease inhibitors (PI). This study identifies, for the first time using machine learning, the factors affecting more HIV-1B pol evolution and those affecting DRM fixation in HIV-1B infected pediatric patients.
format Online
Article
Text
id pubmed-5647794
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-56477942017-10-25 Impact of Clinical Parameters in the Intrahost Evolution of HIV-1 Subtype B in Pediatric Patients: A Machine Learning Approach Rojas Sánchez, Patricia Cobos, Alberto Navaro, Marisa Ramos, José Tomas Pagán, Israel Holguín, África Genome Biol Evol Research Article Determining the factors modulating the genetic diversity of HIV-1 populations is essential to understand viral evolution. This study analyzes the relative importance of clinical factors in the intrahost HIV-1 subtype B (HIV-1B) evolution and in the fixation of drug resistance mutations (DRM) during longitudinal pediatric HIV-1 infection. We recovered 162 partial HIV-1B pol sequences (from 3 to 24 per patient) from 24 perinatally infected patients from the Madrid Cohort of HIV-1 infected children and adolescents in a time interval ranging from 2.2 to 20.3 years. We applied machine learning classification methods to analyze the relative importance of 28 clinical/epidemiological/virological factors in the HIV-1B evolution to predict HIV-1B genetic diversity (d), nonsynonymous and synonymous mutations (d(N), d(S)) and DRM presence. Most of the 24 HIV-1B infected pediatric patients were Spanish (91.7%), diagnosed before 2000 (83.3%), and all were antiretroviral therapy experienced. They had from 0.3 to 18.8 years of HIV-1 exposure at sampling time. Most sequences presented DRM. The best-predictor variables for HIV-1B evolutionary parameters were the age of HIV-1 diagnosis for d, the age at first antiretroviral treatment for d(N) and the year of HIV-1 diagnosis for d(s). The year of infection (birth year) and year of sampling seemed to be relevant for fixation of both DRM at large and, considering drug families, to protease inhibitors (PI). This study identifies, for the first time using machine learning, the factors affecting more HIV-1B pol evolution and those affecting DRM fixation in HIV-1B infected pediatric patients. Oxford University Press 2017-09-18 /pmc/articles/PMC5647794/ /pubmed/29044435 http://dx.doi.org/10.1093/gbe/evx193 Text en © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Research Article
Rojas Sánchez, Patricia
Cobos, Alberto
Navaro, Marisa
Ramos, José Tomas
Pagán, Israel
Holguín, África
Impact of Clinical Parameters in the Intrahost Evolution of HIV-1 Subtype B in Pediatric Patients: A Machine Learning Approach
title Impact of Clinical Parameters in the Intrahost Evolution of HIV-1 Subtype B in Pediatric Patients: A Machine Learning Approach
title_full Impact of Clinical Parameters in the Intrahost Evolution of HIV-1 Subtype B in Pediatric Patients: A Machine Learning Approach
title_fullStr Impact of Clinical Parameters in the Intrahost Evolution of HIV-1 Subtype B in Pediatric Patients: A Machine Learning Approach
title_full_unstemmed Impact of Clinical Parameters in the Intrahost Evolution of HIV-1 Subtype B in Pediatric Patients: A Machine Learning Approach
title_short Impact of Clinical Parameters in the Intrahost Evolution of HIV-1 Subtype B in Pediatric Patients: A Machine Learning Approach
title_sort impact of clinical parameters in the intrahost evolution of hiv-1 subtype b in pediatric patients: a machine learning approach
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5647794/
https://www.ncbi.nlm.nih.gov/pubmed/29044435
http://dx.doi.org/10.1093/gbe/evx193
work_keys_str_mv AT rojassanchezpatricia impactofclinicalparametersintheintrahostevolutionofhiv1subtypebinpediatricpatientsamachinelearningapproach
AT cobosalberto impactofclinicalparametersintheintrahostevolutionofhiv1subtypebinpediatricpatientsamachinelearningapproach
AT navaromarisa impactofclinicalparametersintheintrahostevolutionofhiv1subtypebinpediatricpatientsamachinelearningapproach
AT ramosjosetomas impactofclinicalparametersintheintrahostevolutionofhiv1subtypebinpediatricpatientsamachinelearningapproach
AT paganisrael impactofclinicalparametersintheintrahostevolutionofhiv1subtypebinpediatricpatientsamachinelearningapproach
AT holguinafrica impactofclinicalparametersintheintrahostevolutionofhiv1subtypebinpediatricpatientsamachinelearningapproach