Cargando…
Genome sequences of lower Great Lakes Microcystis sp. reveal strain-specific genes that are present and expressed in western Lake Erie blooms
Blooms of the potentially toxic cyanobacterium Microcystis are increasing worldwide. In the Laurentian Great Lakes they pose major socioeconomic, ecological, and human health threats, particularly in western Lake Erie. However, the interpretation of “omics” data is constrained by the highly variable...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5647855/ https://www.ncbi.nlm.nih.gov/pubmed/29020009 http://dx.doi.org/10.1371/journal.pone.0183859 |
_version_ | 1783272312750997504 |
---|---|
author | Meyer, Kevin Anthony Davis, Timothy W. Watson, Susan B. Denef, Vincent J. Berry, Michelle A. Dick, Gregory J. |
author_facet | Meyer, Kevin Anthony Davis, Timothy W. Watson, Susan B. Denef, Vincent J. Berry, Michelle A. Dick, Gregory J. |
author_sort | Meyer, Kevin Anthony |
collection | PubMed |
description | Blooms of the potentially toxic cyanobacterium Microcystis are increasing worldwide. In the Laurentian Great Lakes they pose major socioeconomic, ecological, and human health threats, particularly in western Lake Erie. However, the interpretation of “omics” data is constrained by the highly variable genome of Microcystis and the small number of reference genome sequences from strains isolated from the Great Lakes. To address this, we sequenced two Microcystis isolates from Lake Erie (Microcystis aeruginosa LE3 and M. wesenbergii LE013-01) and one from upstream Lake St. Clair (M. cf aeruginosa LSC13-02), and compared these data to the genomes of seventeen Microcystis spp. from across the globe as well as one metagenome and seven metatranscriptomes from a 2014 Lake Erie Microcystis bloom. For the publically available strains analyzed, the core genome is ~1900 genes, representing ~11% of total genes in the pan-genome and ~45% of each strain’s genome. The flexible genome content was related to Microcystis subclades defined by phylogenetic analysis of both housekeeping genes and total core genes. To our knowledge this is the first evidence that the flexible genome is linked to the core genome of the Microcystis species complex. The majority of strain-specific genes were present and expressed in bloom communities in Lake Erie. Roughly 8% of these genes from the lower Great Lakes are involved in genome plasticity (rapid gain, loss, or rearrangement of genes) and resistance to foreign genetic elements (such as CRISPR-Cas systems). Intriguingly, strain-specific genes from Microcystis cultured from around the world were also present and expressed in the Lake Erie blooms, suggesting that the Microcystis pangenome is truly global. The presence and expression of flexible genes, including strain-specific genes, suggests that strain-level genomic diversity may be important in maintaining Microcystis abundance during bloom events. |
format | Online Article Text |
id | pubmed-5647855 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-56478552017-10-30 Genome sequences of lower Great Lakes Microcystis sp. reveal strain-specific genes that are present and expressed in western Lake Erie blooms Meyer, Kevin Anthony Davis, Timothy W. Watson, Susan B. Denef, Vincent J. Berry, Michelle A. Dick, Gregory J. PLoS One Research Article Blooms of the potentially toxic cyanobacterium Microcystis are increasing worldwide. In the Laurentian Great Lakes they pose major socioeconomic, ecological, and human health threats, particularly in western Lake Erie. However, the interpretation of “omics” data is constrained by the highly variable genome of Microcystis and the small number of reference genome sequences from strains isolated from the Great Lakes. To address this, we sequenced two Microcystis isolates from Lake Erie (Microcystis aeruginosa LE3 and M. wesenbergii LE013-01) and one from upstream Lake St. Clair (M. cf aeruginosa LSC13-02), and compared these data to the genomes of seventeen Microcystis spp. from across the globe as well as one metagenome and seven metatranscriptomes from a 2014 Lake Erie Microcystis bloom. For the publically available strains analyzed, the core genome is ~1900 genes, representing ~11% of total genes in the pan-genome and ~45% of each strain’s genome. The flexible genome content was related to Microcystis subclades defined by phylogenetic analysis of both housekeeping genes and total core genes. To our knowledge this is the first evidence that the flexible genome is linked to the core genome of the Microcystis species complex. The majority of strain-specific genes were present and expressed in bloom communities in Lake Erie. Roughly 8% of these genes from the lower Great Lakes are involved in genome plasticity (rapid gain, loss, or rearrangement of genes) and resistance to foreign genetic elements (such as CRISPR-Cas systems). Intriguingly, strain-specific genes from Microcystis cultured from around the world were also present and expressed in the Lake Erie blooms, suggesting that the Microcystis pangenome is truly global. The presence and expression of flexible genes, including strain-specific genes, suggests that strain-level genomic diversity may be important in maintaining Microcystis abundance during bloom events. Public Library of Science 2017-10-11 /pmc/articles/PMC5647855/ /pubmed/29020009 http://dx.doi.org/10.1371/journal.pone.0183859 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication. |
spellingShingle | Research Article Meyer, Kevin Anthony Davis, Timothy W. Watson, Susan B. Denef, Vincent J. Berry, Michelle A. Dick, Gregory J. Genome sequences of lower Great Lakes Microcystis sp. reveal strain-specific genes that are present and expressed in western Lake Erie blooms |
title | Genome sequences of lower Great Lakes Microcystis
sp. reveal strain-specific genes that are present and expressed in western Lake
Erie blooms |
title_full | Genome sequences of lower Great Lakes Microcystis
sp. reveal strain-specific genes that are present and expressed in western Lake
Erie blooms |
title_fullStr | Genome sequences of lower Great Lakes Microcystis
sp. reveal strain-specific genes that are present and expressed in western Lake
Erie blooms |
title_full_unstemmed | Genome sequences of lower Great Lakes Microcystis
sp. reveal strain-specific genes that are present and expressed in western Lake
Erie blooms |
title_short | Genome sequences of lower Great Lakes Microcystis
sp. reveal strain-specific genes that are present and expressed in western Lake
Erie blooms |
title_sort | genome sequences of lower great lakes microcystis
sp. reveal strain-specific genes that are present and expressed in western lake
erie blooms |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5647855/ https://www.ncbi.nlm.nih.gov/pubmed/29020009 http://dx.doi.org/10.1371/journal.pone.0183859 |
work_keys_str_mv | AT meyerkevinanthony genomesequencesoflowergreatlakesmicrocystissprevealstrainspecificgenesthatarepresentandexpressedinwesternlakeerieblooms AT davistimothyw genomesequencesoflowergreatlakesmicrocystissprevealstrainspecificgenesthatarepresentandexpressedinwesternlakeerieblooms AT watsonsusanb genomesequencesoflowergreatlakesmicrocystissprevealstrainspecificgenesthatarepresentandexpressedinwesternlakeerieblooms AT denefvincentj genomesequencesoflowergreatlakesmicrocystissprevealstrainspecificgenesthatarepresentandexpressedinwesternlakeerieblooms AT berrymichellea genomesequencesoflowergreatlakesmicrocystissprevealstrainspecificgenesthatarepresentandexpressedinwesternlakeerieblooms AT dickgregoryj genomesequencesoflowergreatlakesmicrocystissprevealstrainspecificgenesthatarepresentandexpressedinwesternlakeerieblooms |