Cargando…

Connectivity maps based analysis of EEG for the advanced diagnosis of schizophrenia attributes

This article presents a novel connectivity analysis method that is suitable for multi-node networks such as EEG, MEG or EcOG electrode recordings. Its diagnostic power and ability to interpret brain states in schizophrenia is demonstrated on a set of 50 subjects that constituted of 25 healthy and 25...

Descripción completa

Detalles Bibliográficos
Autores principales: Dvey-Aharon, Zack, Fogelson, Noa, Peled, Abraham, Intrator, Nathan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5648105/
https://www.ncbi.nlm.nih.gov/pubmed/29049302
http://dx.doi.org/10.1371/journal.pone.0185852
Descripción
Sumario:This article presents a novel connectivity analysis method that is suitable for multi-node networks such as EEG, MEG or EcOG electrode recordings. Its diagnostic power and ability to interpret brain states in schizophrenia is demonstrated on a set of 50 subjects that constituted of 25 healthy and 25 diagnosed with schizophrenia and treated with medication. The method can also be used for the automatic detection of schizophrenia; it exhibits higher sensitivity than state-of-the-art methods with no false positives. The detection is based on an analysis from a minute long pattern-recognition computer task. Moreover, this connectivity analysis leads naturally to an optimal choice of electrodes and hence to highly statistically significant results that are based on data from only 3–5 electrodes. The method is general and can be used for the diagnosis of other psychiatric conditions, provided an appropriate computer task is devised.