Cargando…
A sequential Monte Carlo approach to gene expression deconvolution
High-throughput gene expression data are often obtained from pure or complex (heterogeneous) biological samples. In the latter case, data obtained are a mixture of different cell types and the heterogeneity imposes some difficulties in the analysis of such data. In order to make conclusions on gene...
Autores principales: | Ogundijo, Oyetunji E., Wang, Xiaodong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5648148/ https://www.ncbi.nlm.nih.gov/pubmed/29049343 http://dx.doi.org/10.1371/journal.pone.0186167 |
Ejemplares similares
-
Characterization of tumor heterogeneity by latent haplotypes: a sequential Monte Carlo approach
por: Ogundijo, Oyetunji E., et al.
Publicado: (2018) -
Bayesian estimation of scaled mutation rate under the coalescent: a sequential Monte Carlo approach
por: Ogundijo, Oyetunji E., et al.
Publicado: (2017) -
SeqClone: sequential Monte Carlo based inference of tumor subclones
por: Ogundijo, Oyetunji E., et al.
Publicado: (2019) -
A sequential Monte Carlo algorithm for inference of subclonal structure in cancer
por: Ogundijo, Oyetunji E., et al.
Publicado: (2019) -
Sequential Monte Carlo with transformations
por: Everitt, Richard G., et al.
Publicado: (2019)