Cargando…

Dynamic microbial populations along the Cuyahoga River

The study of the microbial communities has gained traction in recent years with the advent of next-generation sequencing with, or without, PCR-based amplification of the 16S ribosomal RNA region. Such studies have been applied to topics as diverse as human health and environmental ecology. Fewer stu...

Descripción completa

Detalles Bibliográficos
Autores principales: Cannon, Matthew V., Craine, Joseph, Hester, James, Shalkhauser, Amanda, Chan, Ernest R., Logue, Kyle, Small, Scott, Serre, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5648161/
https://www.ncbi.nlm.nih.gov/pubmed/29049324
http://dx.doi.org/10.1371/journal.pone.0186290
Descripción
Sumario:The study of the microbial communities has gained traction in recent years with the advent of next-generation sequencing with, or without, PCR-based amplification of the 16S ribosomal RNA region. Such studies have been applied to topics as diverse as human health and environmental ecology. Fewer studies have investigated taxa outside of bacteria, however. We present here data demonstrating the utility of studying taxa outside of bacteria including algae, diatoms, archaea and fungi. Here, we show how location along the Cuyahoga River as well as a transient rainfall event heavily influence the microbial composition. Our data reveal how individual OTUs vary between samples and how the patterns of OTU abundance can accurately predict sampling location. The clustering of samples reveals that these taxa are all sensitive to water conditions in unique ways and demonstrate that, for our dataset, algae was most distinctive between sample groups, surpassing bacteria. Diversity between sampling sites could allow studies investigating pollution or water quality to identify marker OTUs or patterns of OTU abundance as indicators to assess environmental conditions or the impact of human activity. We also directly compare data derived from primers amplifying distinct taxa and show that taxa besides bacteria are excellent indicators of water condition.