Cargando…

Low overlap between carbapenem resistant Pseudomonas aeruginosa genotypes isolated from hospitalized patients and wastewater treatment plants

The variability of carbapenem-resistant Pseudomonas aeruginosa strains (CRPA) isolated from urine and respiratory samples in a large microbiological laboratory, serving several health care settings, and from effluents of two wastewater treatment plants (WWTP) from the same region was assessed by PFG...

Descripción completa

Detalles Bibliográficos
Autores principales: Golle, Andrej, Janezic, Sandra, Rupnik, Maja
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5648238/
https://www.ncbi.nlm.nih.gov/pubmed/29049368
http://dx.doi.org/10.1371/journal.pone.0186736
Descripción
Sumario:The variability of carbapenem-resistant Pseudomonas aeruginosa strains (CRPA) isolated from urine and respiratory samples in a large microbiological laboratory, serving several health care settings, and from effluents of two wastewater treatment plants (WWTP) from the same region was assessed by PFGE typing and by resistance to 10 antibiotics. During the 12-month period altogether 213 carbapenem-resistant P. aeruginosa isolates were cultured and distributed into 65 pulsotypes and ten resistance profiles. For representatives of all 65 pulsotypes 49 different MLSTs were determined. Variability of clinical and environmental strains was comparable, 130 carbapenem-resistant P. aeruginosa obtained from 109 patients were distributed into 38 pulsotypes, while 83 isolates from WWTPs were classified into 31 pulsotypes. Only 9 pulsotypes were shared between two or more settings (hospital or WWTP). Ten MLST were determined for those prevalent pulsotypes, two of them (ST111 and ST235) are among most successful CRPA types worldwide. Clinical and environmental carbapenem-resistant P. aeruginosa strains differed in antibiotic resistance. The highest proportion of clinical isolates was resistant to piperacillin/tazobactam (52.3%) and ceftazidime (42.3%). The highest proportion of environmental isolates was resistant to ceftazidime (37.1%) and ciprofloxacin (35.5%). The majority of isolates was resistant only to imipenem and/or meropenem. Strains with additional resistances were distributed into nine different patterns. All of them included clinically relevant strains, while environmental strains showed only four additional different patterns.