Cargando…

Transgenic expression of antimicrobial peptide D2A21 confers resistance to diseases incited by Pseudomonas syringae pv. tabaci and Xanthomonas citri, but not Candidatus Liberibacter asiaticus

Citrus Huanglongbing (HLB) associated with ‘Candidatus Liberibacter asiaticus’ (Las) and citrus canker disease incited by Xanthomonas citri are the most devastating citrus diseases worldwide. To control citrus HLB and canker disease, we previously screened over forty antimicrobial peptides (AMPs) in...

Descripción completa

Detalles Bibliográficos
Autores principales: Hao, Guixia, Zhang, Shujian, Stover, Ed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5648250/
https://www.ncbi.nlm.nih.gov/pubmed/29049366
http://dx.doi.org/10.1371/journal.pone.0186810
_version_ 1783272365038239744
author Hao, Guixia
Zhang, Shujian
Stover, Ed
author_facet Hao, Guixia
Zhang, Shujian
Stover, Ed
author_sort Hao, Guixia
collection PubMed
description Citrus Huanglongbing (HLB) associated with ‘Candidatus Liberibacter asiaticus’ (Las) and citrus canker disease incited by Xanthomonas citri are the most devastating citrus diseases worldwide. To control citrus HLB and canker disease, we previously screened over forty antimicrobial peptides (AMPs) in vitro for their potential application in genetic engineering. D2A21 was one of the most active AMPs against X. citri, Agrobacterium tumefaciens and Sinorhizobium meliloti with low hemolysis activity. Therefore, we conducted this work to assess transgenic expression of D2A21 peptide to achieve citrus resistant to canker and HLB. We generated a construct expressing D2A21 and initially transformed tobacco as a model plant. Transgenic tobacco expressing D2A21 was obtained by Agrobacterium-mediated transformation. Successful transformation and D2A21 expression was confirmed by molecular analysis. We evaluated disease development incited by Pseudomonas syringae pv. tabaci in transgenic tobacco. Transgenic tobacco plants expressing D2A21 showed remarkable disease resistance compared to control plants. Therefore, we performed citrus transformations with the same construct and obtained transgenic Carrizo citrange. Gene integration and gene expression in transgenic plants were determined by PCR and RT-qPCR. Transgenic Carrizo expressing D2A21 showed significant canker resistance while the control plants showed clear canker symptoms following both leaf infiltration and spray inoculation with X. citri 3213. Transgenic Carrizo plants were challenged for HLB evaluation by grafting with Las infected rough lemon buds. Las titer was determined by qPCR in the leaves and roots of transgenic and control plants. However, our results showed that transgenic plants expressing D2A21 did not significantly reduce Las titer compared to control plants. We demonstrated that transgenic expression of D2A21 conferred resistance to diseases incited by P. syringae pv. tabaci and X. citri but not Las. Our results underscore the difficulty in controlling HLB compared to other bacterial diseases.
format Online
Article
Text
id pubmed-5648250
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-56482502017-11-03 Transgenic expression of antimicrobial peptide D2A21 confers resistance to diseases incited by Pseudomonas syringae pv. tabaci and Xanthomonas citri, but not Candidatus Liberibacter asiaticus Hao, Guixia Zhang, Shujian Stover, Ed PLoS One Research Article Citrus Huanglongbing (HLB) associated with ‘Candidatus Liberibacter asiaticus’ (Las) and citrus canker disease incited by Xanthomonas citri are the most devastating citrus diseases worldwide. To control citrus HLB and canker disease, we previously screened over forty antimicrobial peptides (AMPs) in vitro for their potential application in genetic engineering. D2A21 was one of the most active AMPs against X. citri, Agrobacterium tumefaciens and Sinorhizobium meliloti with low hemolysis activity. Therefore, we conducted this work to assess transgenic expression of D2A21 peptide to achieve citrus resistant to canker and HLB. We generated a construct expressing D2A21 and initially transformed tobacco as a model plant. Transgenic tobacco expressing D2A21 was obtained by Agrobacterium-mediated transformation. Successful transformation and D2A21 expression was confirmed by molecular analysis. We evaluated disease development incited by Pseudomonas syringae pv. tabaci in transgenic tobacco. Transgenic tobacco plants expressing D2A21 showed remarkable disease resistance compared to control plants. Therefore, we performed citrus transformations with the same construct and obtained transgenic Carrizo citrange. Gene integration and gene expression in transgenic plants were determined by PCR and RT-qPCR. Transgenic Carrizo expressing D2A21 showed significant canker resistance while the control plants showed clear canker symptoms following both leaf infiltration and spray inoculation with X. citri 3213. Transgenic Carrizo plants were challenged for HLB evaluation by grafting with Las infected rough lemon buds. Las titer was determined by qPCR in the leaves and roots of transgenic and control plants. However, our results showed that transgenic plants expressing D2A21 did not significantly reduce Las titer compared to control plants. We demonstrated that transgenic expression of D2A21 conferred resistance to diseases incited by P. syringae pv. tabaci and X. citri but not Las. Our results underscore the difficulty in controlling HLB compared to other bacterial diseases. Public Library of Science 2017-10-19 /pmc/articles/PMC5648250/ /pubmed/29049366 http://dx.doi.org/10.1371/journal.pone.0186810 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication.
spellingShingle Research Article
Hao, Guixia
Zhang, Shujian
Stover, Ed
Transgenic expression of antimicrobial peptide D2A21 confers resistance to diseases incited by Pseudomonas syringae pv. tabaci and Xanthomonas citri, but not Candidatus Liberibacter asiaticus
title Transgenic expression of antimicrobial peptide D2A21 confers resistance to diseases incited by Pseudomonas syringae pv. tabaci and Xanthomonas citri, but not Candidatus Liberibacter asiaticus
title_full Transgenic expression of antimicrobial peptide D2A21 confers resistance to diseases incited by Pseudomonas syringae pv. tabaci and Xanthomonas citri, but not Candidatus Liberibacter asiaticus
title_fullStr Transgenic expression of antimicrobial peptide D2A21 confers resistance to diseases incited by Pseudomonas syringae pv. tabaci and Xanthomonas citri, but not Candidatus Liberibacter asiaticus
title_full_unstemmed Transgenic expression of antimicrobial peptide D2A21 confers resistance to diseases incited by Pseudomonas syringae pv. tabaci and Xanthomonas citri, but not Candidatus Liberibacter asiaticus
title_short Transgenic expression of antimicrobial peptide D2A21 confers resistance to diseases incited by Pseudomonas syringae pv. tabaci and Xanthomonas citri, but not Candidatus Liberibacter asiaticus
title_sort transgenic expression of antimicrobial peptide d2a21 confers resistance to diseases incited by pseudomonas syringae pv. tabaci and xanthomonas citri, but not candidatus liberibacter asiaticus
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5648250/
https://www.ncbi.nlm.nih.gov/pubmed/29049366
http://dx.doi.org/10.1371/journal.pone.0186810
work_keys_str_mv AT haoguixia transgenicexpressionofantimicrobialpeptided2a21confersresistancetodiseasesincitedbypseudomonassyringaepvtabaciandxanthomonascitributnotcandidatusliberibacterasiaticus
AT zhangshujian transgenicexpressionofantimicrobialpeptided2a21confersresistancetodiseasesincitedbypseudomonassyringaepvtabaciandxanthomonascitributnotcandidatusliberibacterasiaticus
AT stovered transgenicexpressionofantimicrobialpeptided2a21confersresistancetodiseasesincitedbypseudomonassyringaepvtabaciandxanthomonascitributnotcandidatusliberibacterasiaticus