Cargando…
The blue light-induced interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light signaling
Plants constantly adjust their growth, development and metabolism to the ambient light environment. Blue light is sensed by the Arabidopsis photoreceptors CRY1 and CRY2 which subsequently initiate light signal transduction by repressing the COP1/SPA E3 ubiquitin ligase. While the interaction between...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5648270/ https://www.ncbi.nlm.nih.gov/pubmed/28991901 http://dx.doi.org/10.1371/journal.pgen.1007044 |
_version_ | 1783272369792483328 |
---|---|
author | Holtkotte, Xu Ponnu, Jathish Ahmad, Margaret Hoecker, Ute |
author_facet | Holtkotte, Xu Ponnu, Jathish Ahmad, Margaret Hoecker, Ute |
author_sort | Holtkotte, Xu |
collection | PubMed |
description | Plants constantly adjust their growth, development and metabolism to the ambient light environment. Blue light is sensed by the Arabidopsis photoreceptors CRY1 and CRY2 which subsequently initiate light signal transduction by repressing the COP1/SPA E3 ubiquitin ligase. While the interaction between cryptochromes and SPA is blue light-dependent, it was proposed that CRY1 interacts with COP1 constitutively, i.e. also in darkness. Here, our in vivo co-immunoprecipitation experiments suggest that CRY1 and CRY2 form a complex with COP1 only after seedlings were exposed to blue light. No association between COP1 and CRY1 or CRY2 was observed in dark-grown seedlings. Thus, our results suggest that cryptochromes bind the COP1/SPA complex after photoactivation by blue light. In a spa quadruple mutant that is devoid of all four SPA proteins, CRY1 and COP1 did not interact in vivo, neither in dark-grown nor in blue light-grown seedlings. Hence, SPA proteins are required for the high-affinity interaction between CRY1 and COP1 in blue light. Yeast three-hybrid experiments also show that SPA1 enhances the CRY1-COP1 interaction. The coiled-coil domain of SPA1 which is responsible for COP1-binding was necessary to mediate a CRY1-SPA1 interaction in vivo, implying that—in turn—COP1 may be necessary for a CRY1-SPA1 complex formation. Hence, SPA1 and COP1 may act cooperatively in recognizing and binding photoactivated CRY1. In contrast, the blue light-induced association between CRY2 and COP1 was not dependent on SPA proteins in vivo. Similarly, ΔCC-SPA1 interacted with CRY2, though with a much lower affinity than wild-type SPA1. In total, our results demonstrate that CRY1 and CRY2 strongly differ in their blue light-induced interaction with the COP1/SPA complex. |
format | Online Article Text |
id | pubmed-5648270 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-56482702017-11-03 The blue light-induced interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light signaling Holtkotte, Xu Ponnu, Jathish Ahmad, Margaret Hoecker, Ute PLoS Genet Research Article Plants constantly adjust their growth, development and metabolism to the ambient light environment. Blue light is sensed by the Arabidopsis photoreceptors CRY1 and CRY2 which subsequently initiate light signal transduction by repressing the COP1/SPA E3 ubiquitin ligase. While the interaction between cryptochromes and SPA is blue light-dependent, it was proposed that CRY1 interacts with COP1 constitutively, i.e. also in darkness. Here, our in vivo co-immunoprecipitation experiments suggest that CRY1 and CRY2 form a complex with COP1 only after seedlings were exposed to blue light. No association between COP1 and CRY1 or CRY2 was observed in dark-grown seedlings. Thus, our results suggest that cryptochromes bind the COP1/SPA complex after photoactivation by blue light. In a spa quadruple mutant that is devoid of all four SPA proteins, CRY1 and COP1 did not interact in vivo, neither in dark-grown nor in blue light-grown seedlings. Hence, SPA proteins are required for the high-affinity interaction between CRY1 and COP1 in blue light. Yeast three-hybrid experiments also show that SPA1 enhances the CRY1-COP1 interaction. The coiled-coil domain of SPA1 which is responsible for COP1-binding was necessary to mediate a CRY1-SPA1 interaction in vivo, implying that—in turn—COP1 may be necessary for a CRY1-SPA1 complex formation. Hence, SPA1 and COP1 may act cooperatively in recognizing and binding photoactivated CRY1. In contrast, the blue light-induced association between CRY2 and COP1 was not dependent on SPA proteins in vivo. Similarly, ΔCC-SPA1 interacted with CRY2, though with a much lower affinity than wild-type SPA1. In total, our results demonstrate that CRY1 and CRY2 strongly differ in their blue light-induced interaction with the COP1/SPA complex. Public Library of Science 2017-10-09 /pmc/articles/PMC5648270/ /pubmed/28991901 http://dx.doi.org/10.1371/journal.pgen.1007044 Text en © 2017 Holtkotte et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Holtkotte, Xu Ponnu, Jathish Ahmad, Margaret Hoecker, Ute The blue light-induced interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light signaling |
title | The blue light-induced interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light signaling |
title_full | The blue light-induced interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light signaling |
title_fullStr | The blue light-induced interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light signaling |
title_full_unstemmed | The blue light-induced interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light signaling |
title_short | The blue light-induced interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light signaling |
title_sort | blue light-induced interaction of cryptochrome 1 with cop1 requires spa proteins during arabidopsis light signaling |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5648270/ https://www.ncbi.nlm.nih.gov/pubmed/28991901 http://dx.doi.org/10.1371/journal.pgen.1007044 |
work_keys_str_mv | AT holtkottexu thebluelightinducedinteractionofcryptochrome1withcop1requiresspaproteinsduringarabidopsislightsignaling AT ponnujathish thebluelightinducedinteractionofcryptochrome1withcop1requiresspaproteinsduringarabidopsislightsignaling AT ahmadmargaret thebluelightinducedinteractionofcryptochrome1withcop1requiresspaproteinsduringarabidopsislightsignaling AT hoeckerute thebluelightinducedinteractionofcryptochrome1withcop1requiresspaproteinsduringarabidopsislightsignaling AT holtkottexu bluelightinducedinteractionofcryptochrome1withcop1requiresspaproteinsduringarabidopsislightsignaling AT ponnujathish bluelightinducedinteractionofcryptochrome1withcop1requiresspaproteinsduringarabidopsislightsignaling AT ahmadmargaret bluelightinducedinteractionofcryptochrome1withcop1requiresspaproteinsduringarabidopsislightsignaling AT hoeckerute bluelightinducedinteractionofcryptochrome1withcop1requiresspaproteinsduringarabidopsislightsignaling |