Cargando…
Multiple co-clustering based on nonparametric mixture models with heterogeneous marginal distributions
We propose a novel method for multiple clustering, which is useful for analysis of high-dimensional data containing heterogeneous types of features. Our method is based on nonparametric Bayesian mixture models in which features are automatically partitioned (into views) for each clustering solution....
Autores principales: | Tokuda, Tomoki, Yoshimoto, Junichiro, Shimizu, Yu, Okada, Go, Takamura, Masahiro, Okamoto, Yasumasa, Yamawaki, Shigeto, Doya, Kenji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5648298/ https://www.ncbi.nlm.nih.gov/pubmed/29049392 http://dx.doi.org/10.1371/journal.pone.0186566 |
Ejemplares similares
-
Identification of depression subtypes and relevant brain regions using a data-driven approach
por: Tokuda, Tomoki, et al.
Publicado: (2018) -
PS244. Depression severity and related characteristics correlate significantly with activation in brain areas selected through machine learning
por: Shimizu, Yu, et al.
Publicado: (2016) -
Prediction of clinical depression scores and detection of changes in whole-brain using resting-state functional MRI data with partial least squares regression
por: Yoshida, Kosuke, et al.
Publicado: (2017) -
Toward Probabilistic Diagnosis and Understanding of Depression Based on Functional MRI Data Analysis with Logistic Group LASSO
por: Shimizu, Yu, et al.
Publicado: (2015) -
Modeling Heterogeneous Brain Dynamics of Depression and Melancholia Using Energy Landscape Analysis
por: Regonia, Paul Rossener, et al.
Publicado: (2021)