Cargando…
Automated Detection of Postoperative Surgical Site Infections Using Supervised Methods with Electronic Health Record Data
The National Surgical Quality Improvement Project (NSQIP) is widely recognized as “the best in the nation” surgical quality improvement resource in the United States. In particular, it rigorously defines postoperative morbidity outcomes, including surgical adverse events occurring within 30 days of...
Autores principales: | Hu, Zhen, Simon, Gyorgy J., Arsoniadis, Elliot G., Wang, Yan, Kwaan, Mary R., Melton, Genevieve B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5648590/ https://www.ncbi.nlm.nih.gov/pubmed/26262143 |
Ejemplares similares
-
Characterizing Surgical Site Infection Signals in Clinical Notes
por: Skube, Steven J, et al.
Publicado: (2017) -
Characterizing Functional Health Status of Surgical Patients in Clinical Notes
por: Skube, Steven J., et al.
Publicado: (2018) -
Detecting clinically relevant new information in clinical notes across specialties and settings
por: Zhang, Rui, et al.
Publicado: (2017) -
Bias Associated with Mining Electronic Health Records
por: Hripcsak, George, et al.
Publicado: (2011) -
Detecting Signals of Interactions Between Warfarin and Dietary Supplements in Electronic Health Records
por: Fan, Yadan, et al.
Publicado: (2017)