Cargando…
Nitrogen uptake and transfer in a soybean/maize intercropping system in the karst region of southwest China
Nitrogen (N) deficiency occurs in over 80% of karst soil of southwest China, which restricts regional agricultural production. To test whether N fixed by legumes becomes available to nonfixing companion species, N fluxes between soybean and maize under no, partial, and total restriction of root cont...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5648690/ https://www.ncbi.nlm.nih.gov/pubmed/29075459 http://dx.doi.org/10.1002/ece3.3295 |
Sumario: | Nitrogen (N) deficiency occurs in over 80% of karst soil of southwest China, which restricts regional agricultural production. To test whether N fixed by legumes becomes available to nonfixing companion species, N fluxes between soybean and maize under no, partial, and total restriction of root contact were measured on a karst site in southwest China. N content and its transfer between soybean and maize intercrops were explored in a 2‐year plot experiment, with N movement between crops monitored using (15)N isotopes. Mesh barrier (30 μm) and no restrictions barrier root separation increased N uptake of maize by 1.28%–3.45% and 3.2%–3.45%, respectively. N uptake by soybean with no restrictions root separation was 1.23 and 1.56 times higher than that by mesh and solid barriers, respectively. In the unrestricted root condition, N transfer from soybean to maize in no restrictions barrier was 2.34–3.02 mg higher than that of mesh barrier. Therefore, it was implied that soybean/maize intercropping could improve N uptake and transfer efficiently in the karst region of southwest China. |
---|