Cargando…
Some new sharp bounds for the spectral radius of a nonnegative matrix and its application
In this paper, we give some new sharp upper and lower bounds for the spectral radius of a nonnegative irreducible matrix. Using these bounds, we obtain some new and improved bounds for the signless Laplacian spectral radius of a graph or a digraph.
Autores principales: | He, Jun, Liu, Yan-Min, Tian, Jun-Kang, Liu, Xiang-Hu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5648768/ https://www.ncbi.nlm.nih.gov/pubmed/29104398 http://dx.doi.org/10.1186/s13660-017-1536-3 |
Ejemplares similares
-
Bounds for the Z-spectral radius of nonnegative tensors
por: He, Jun, et al.
Publicado: (2016) -
A new bound for the spectral radius of nonnegative tensors
por: Li, Suhua, et al.
Publicado: (2017) -
An upper bound for the Z-spectral radius of adjacency tensors
por: Wu, Zhi-Yong, et al.
Publicado: (2018) -
Assessment of nonnegative matrix factorization algorithms for electroencephalography spectral analysis
por: Hu, Guoqiang, et al.
Publicado: (2020) -
Some inequalities on the spectral radius of matrices
por: Zhao, Linlin, et al.
Publicado: (2018)