Cargando…
Prediction of recurrence in early stage non-small cell lung cancer using computer extracted nuclear features from digital H&E images
Identification of patients with early stage non-small cell lung cancer (NSCLC) with high risk of recurrence could help identify patients who would receive additional benefit from adjuvant therapy. In this work, we present a computational histomorphometric image classifier using nuclear orientation,...
Autores principales: | Wang, Xiangxue, Janowczyk, Andrew, Zhou, Yu, Thawani, Rajat, Fu, Pingfu, Schalper, Kurt, Velcheti, Vamsidhar, Madabhushi, Anant |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5648794/ https://www.ncbi.nlm.nih.gov/pubmed/29051570 http://dx.doi.org/10.1038/s41598-017-13773-7 |
Ejemplares similares
-
A prognostic model for overall survival of patients with early-stage non-small cell lung cancer: a multicentre, retrospective study
por: Lu, Cheng, et al.
Publicado: (2020) -
A prognostic and predictive computational pathology image signature for added benefit of adjuvant chemotherapy in early stage non-small-cell lung cancer
por: Wang, Xiangxue, et al.
Publicado: (2021) -
Computer‐extracted features of nuclear morphology in hematoxylin and eosin images distinguish stage II and IV colon tumors
por: Kumar, Neeraj, et al.
Publicado: (2022) -
Spatial interplay patterns of cancer nuclei and tumor-infiltrating lymphocytes (TILs) predict clinical benefit for immune checkpoint inhibitors
por: Wang, Xiangxue, et al.
Publicado: (2022) -
Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases
por: Janowczyk, Andrew, et al.
Publicado: (2016)