Cargando…

Influence of the Gut Microbiota Composition on Campylobacter jejuni Colonization in Chickens

The Campylobacter jejuni-host interaction may be affected by the host's gut microbiota through competitive exclusion, metabolites, or modification of the immune response. To understand this interaction, C. jejuni colonization and local immune responses were compared in chickens with different g...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Zifeng, Willer, Thomas, Li, Li, Pielsticker, Colin, Rychlik, Ivan, Velge, Philippe, Kaspers, Bernd, Rautenschlein, Silke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5649013/
https://www.ncbi.nlm.nih.gov/pubmed/28808158
http://dx.doi.org/10.1128/IAI.00380-17
Descripción
Sumario:The Campylobacter jejuni-host interaction may be affected by the host's gut microbiota through competitive exclusion, metabolites, or modification of the immune response. To understand this interaction, C. jejuni colonization and local immune responses were compared in chickens with different gut microbiota compositions. Birds were treated with an antibiotic cocktail (AT) (experiments 1 and 2) or raised under germfree (GF) conditions (experiment 3). At 18 days posthatch (dph), they were orally inoculated either with 10(4) CFU of C. jejuni or with diluent. Cecal as well as systemic C. jejuni colonization, T- and B-cell numbers in the gut, and gut-associated tissue were compared between the different groups. Significantly higher numbers of CFU of C. jejuni were detected in the cecal contents of AT and GF birds, with higher colonization rates in spleen, liver, and ileum, than in birds with a conventional gut microbiota (P < 0.05). Significant upregulation of T and B lymphocyte numbers was detected in cecum, cecal tonsils, and bursa of Fabricius of AT or GF birds after C. jejuni inoculation compared to the respective controls (P < 0.05). This difference was less clear in birds with a conventional gut microbiota. Histopathological gut lesions were observed only in C. jejuni-inoculated AT and GF birds but not in microbiota-colonized C. jejuni-inoculated hatchmates. These results demonstrate that the gut microbiota may contribute to the control of C. jejuni colonization and prevent lesion development. Further studies are needed to identify key players of the gut microbiota and the mechanisms behind their protective role.