Cargando…

Phenotypic changes of Schwann cells on the proximal stump of injured peripheral nerve during repair using small gap conduit tube

Dedifferentiation of Schwann cells is an important feature of the response to peripheral nerve injury and specific negative myelination regulators are considered to have a major role in this process. However, most experiments have focused on the distal nerve stump, where the Notch signaling pathway...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Shi-jun, Wu, Wen-liang, Yang, Kai-yun, Chen, Yun-zhen, Liu, Hai-chun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5649476/
https://www.ncbi.nlm.nih.gov/pubmed/29090001
http://dx.doi.org/10.4103/1673-5374.215266
_version_ 1783272549695619072
author Zhang, Shi-jun
Wu, Wen-liang
Yang, Kai-yun
Chen, Yun-zhen
Liu, Hai-chun
author_facet Zhang, Shi-jun
Wu, Wen-liang
Yang, Kai-yun
Chen, Yun-zhen
Liu, Hai-chun
author_sort Zhang, Shi-jun
collection PubMed
description Dedifferentiation of Schwann cells is an important feature of the response to peripheral nerve injury and specific negative myelination regulators are considered to have a major role in this process. However, most experiments have focused on the distal nerve stump, where the Notch signaling pathway is strongly associated with Schwann cell dedifferentiation and repair of the nerve. We observed the phenotypic changes of Schwann cells and changes of active Notch signaling on the proximal stump during peripheral nerve repair using small gap conduit tubulization. Eighty rats, with right sciatic nerve section of 4 mm, were randomly assigned to conduit bridging group and control group (epineurium suture). Glial fibrillary acidic protein expression, in myelinating Schwann cells on the proximal stump, began to up-regulate at 1 day after injury and was still evident at 5 days. Compared with the control group, Notch1 mRNA was expressed at a higher level in the conduit bridging group during the first week on the proximal stump. Hes1 mRNA levels in the conduit bridging group significantly increased compared with the control group at 3, 5, 7 and 14 days post-surgery. The change of the Notch intracellular domain shared a similar trend as Hes1 mRNA expression. Our results confirmed that phenotypic changes of Schwann cells occurred in the proximal stump. The differences in these changes between the conduit tubulization and epineurium suture groups correlate with changes in Notch signaling. This suggests that active Notch signaling might be a key mechanism during the early stage of neural regeneration in the proximal nerve stump.
format Online
Article
Text
id pubmed-5649476
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Medknow Publications & Media Pvt Ltd
record_format MEDLINE/PubMed
spelling pubmed-56494762017-10-31 Phenotypic changes of Schwann cells on the proximal stump of injured peripheral nerve during repair using small gap conduit tube Zhang, Shi-jun Wu, Wen-liang Yang, Kai-yun Chen, Yun-zhen Liu, Hai-chun Neural Regen Res Research Article Dedifferentiation of Schwann cells is an important feature of the response to peripheral nerve injury and specific negative myelination regulators are considered to have a major role in this process. However, most experiments have focused on the distal nerve stump, where the Notch signaling pathway is strongly associated with Schwann cell dedifferentiation and repair of the nerve. We observed the phenotypic changes of Schwann cells and changes of active Notch signaling on the proximal stump during peripheral nerve repair using small gap conduit tubulization. Eighty rats, with right sciatic nerve section of 4 mm, were randomly assigned to conduit bridging group and control group (epineurium suture). Glial fibrillary acidic protein expression, in myelinating Schwann cells on the proximal stump, began to up-regulate at 1 day after injury and was still evident at 5 days. Compared with the control group, Notch1 mRNA was expressed at a higher level in the conduit bridging group during the first week on the proximal stump. Hes1 mRNA levels in the conduit bridging group significantly increased compared with the control group at 3, 5, 7 and 14 days post-surgery. The change of the Notch intracellular domain shared a similar trend as Hes1 mRNA expression. Our results confirmed that phenotypic changes of Schwann cells occurred in the proximal stump. The differences in these changes between the conduit tubulization and epineurium suture groups correlate with changes in Notch signaling. This suggests that active Notch signaling might be a key mechanism during the early stage of neural regeneration in the proximal nerve stump. Medknow Publications & Media Pvt Ltd 2017-09 /pmc/articles/PMC5649476/ /pubmed/29090001 http://dx.doi.org/10.4103/1673-5374.215266 Text en Copyright: © Neural Regeneration Research http://creativecommons.org/licenses/by-nc-sa/3.0 This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.
spellingShingle Research Article
Zhang, Shi-jun
Wu, Wen-liang
Yang, Kai-yun
Chen, Yun-zhen
Liu, Hai-chun
Phenotypic changes of Schwann cells on the proximal stump of injured peripheral nerve during repair using small gap conduit tube
title Phenotypic changes of Schwann cells on the proximal stump of injured peripheral nerve during repair using small gap conduit tube
title_full Phenotypic changes of Schwann cells on the proximal stump of injured peripheral nerve during repair using small gap conduit tube
title_fullStr Phenotypic changes of Schwann cells on the proximal stump of injured peripheral nerve during repair using small gap conduit tube
title_full_unstemmed Phenotypic changes of Schwann cells on the proximal stump of injured peripheral nerve during repair using small gap conduit tube
title_short Phenotypic changes of Schwann cells on the proximal stump of injured peripheral nerve during repair using small gap conduit tube
title_sort phenotypic changes of schwann cells on the proximal stump of injured peripheral nerve during repair using small gap conduit tube
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5649476/
https://www.ncbi.nlm.nih.gov/pubmed/29090001
http://dx.doi.org/10.4103/1673-5374.215266
work_keys_str_mv AT zhangshijun phenotypicchangesofschwanncellsontheproximalstumpofinjuredperipheralnerveduringrepairusingsmallgapconduittube
AT wuwenliang phenotypicchangesofschwanncellsontheproximalstumpofinjuredperipheralnerveduringrepairusingsmallgapconduittube
AT yangkaiyun phenotypicchangesofschwanncellsontheproximalstumpofinjuredperipheralnerveduringrepairusingsmallgapconduittube
AT chenyunzhen phenotypicchangesofschwanncellsontheproximalstumpofinjuredperipheralnerveduringrepairusingsmallgapconduittube
AT liuhaichun phenotypicchangesofschwanncellsontheproximalstumpofinjuredperipheralnerveduringrepairusingsmallgapconduittube