Cargando…

Inhibition of cell invasion and migration by CEACAM1-4S in breast cancer

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), a cell-cell adhesion molecule, has been revealed to perform an important role in tumor progression. Although there are a number of studies on CEACAM1 in patients with breast cancer, there is limited information on the roles of CEAC...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Changcheng, Cao, Manlin, Liu, Yiwen, He, Yiqing, Yang, Cuixia, Du, Yan, Wang, Wenjuan, Zhang, Guoliang, Wu, Man, Zhou, Muqing, Gao, Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5649695/
https://www.ncbi.nlm.nih.gov/pubmed/29085477
http://dx.doi.org/10.3892/ol.2017.6791
Descripción
Sumario:Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), a cell-cell adhesion molecule, has been revealed to perform an important role in tumor progression. Although there are a number of studies on CEACAM1 in patients with breast cancer, there is limited information on the roles of CEACAM1 in breast cancer metastasis. The present study aimed to identify whether CEACAM1 is involved in breast cancer development and to investigate the underlying mechanisms. First, the expression of CEACAM1 was observed in patients with breast cancer, and the association between CEACAM1 expression levels and migration and invasion of breast cancer cells was analyzed. As there are 12 isoforms of CEACAM1, of which CEACAM1-4S dominates in the human breast epithelium, subsequent study focused on CEACAM1-4S as a representative of all the isoforms. Results of the present study demonstrated that CEACAM1-4S suppresses breast cancer cell invasion and migration in a manner that is dependent on the balance between matrix metalloproteinase 2/tissue inhibitor of metalloproteinase 2 and E-/N-cadherin expression. In addition, CEACAM1-4S was likely to cause reversal of epithelial-mesenchymal transition of breast cancer cells through repressing Smad2 and signal transducer and phosphorylation of activator of transcription 3. In conclusion, the present study demonstrated that CEACAM1-4S performs an inhibitory role in breast cancer metastasis, and restoring CEACAM1-4S expression may provide a novel strategy for therapy of patients with metastatic breast cancer.