Cargando…

Newcastle disease virus-induced autophagy mediates antiapoptotic signaling responses in vitro and in vivo

In this study, we investigated the role of autophagy and apoptosis in Newcastle disease virus (NDV)-infected chicken cells and tissues. NDV-infected and starvation-induced chick embryo fibroblasts (CEF) cells showed higher autophagosome formation than mock-infected CEF cells on transmission electron...

Descripción completa

Detalles Bibliográficos
Autores principales: Kang, Yinfeng, Yuan, Runyu, Xiang, Bin, Zhao, Xiaqiong, Gao, Pei, Dai, Xu, Liao, Ming, Ren, Tao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5650317/
https://www.ncbi.nlm.nih.gov/pubmed/29088762
http://dx.doi.org/10.18632/oncotarget.18169
Descripción
Sumario:In this study, we investigated the role of autophagy and apoptosis in Newcastle disease virus (NDV)-infected chicken cells and tissues. NDV-infected and starvation-induced chick embryo fibroblasts (CEF) cells showed higher autophagosome formation than mock-infected CEF cells on transmission electron microscopy. The NDV-infected CEF cells showed enhanced conversion of microtubule-associated protein 1 light chain 3-I (LC3-I) to LC3-II and degradation of p62/SQSTM1. The diminished conversion of LC3-I to LC3-II and cleaved caspase 3 and poly (ADP-ribose) polymerase (PARP) in ultraviolet-inactivated NDV-infected cells suggested that autophagosome formation was necessary for NDV replication. Inhibition of autophagy by chloroquine (CQ) enhanced apoptosis resulting in increased cleavage of caspase 3 and PARP and AnnexinV/propidium iodide staining. Autophagy induction by rapamycin resulted in upregulation of all autophagy-related genes except Beclin 1, anti-apoptosis factors, and proinflammatory cytokines in the NDV-infected spleen and lung tissues. Subsequently, decreased apoptosis was observed in NDV-infected spleens and lungs than mock-infected organs. The pan-caspase inhibitor ZVAD-FMK promoted conversion of LC3-I to LC3-II, the degradation of p62/SQSTM1, NDV replication and cell viability by inhibiting apoptosis. Our study demonstrates that apoptosis inhibition enhances autophagy and promoted cell survival and NDV replication.