Cargando…

Divergent Immunomodulation Capacity of Individual Myelin Peptides—Components of Liposomal Therapeutic against Multiple Sclerosis

Multiple sclerosis (MS) is an autoimmune disease characterized by demyelination and consequent neuron injury. Although the pathogenesis of MS is largely unknown, a breach in immune self-tolerance to myelin followed by development of autoreactive encephalitogenic T cells is suggested to play the cent...

Descripción completa

Detalles Bibliográficos
Autores principales: Ivanova, Vilena V., Khaiboullina, Svetlana F., Gomzikova, Marina O., Martynova, Ekaterina V., Ferreira, André M., Garanina, Ekaterina E., Sakhapov, Damir I., Lomakin, Yakov A., Khaibullin, Timur I., Granatov, Evgenii V., Khabirov, Farit A., Rizvanov, Albert A., Gabibov, Alexander, Belogurov, Alexey
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5650689/
https://www.ncbi.nlm.nih.gov/pubmed/29085375
http://dx.doi.org/10.3389/fimmu.2017.01335
_version_ 1783272750437105664
author Ivanova, Vilena V.
Khaiboullina, Svetlana F.
Gomzikova, Marina O.
Martynova, Ekaterina V.
Ferreira, André M.
Garanina, Ekaterina E.
Sakhapov, Damir I.
Lomakin, Yakov A.
Khaibullin, Timur I.
Granatov, Evgenii V.
Khabirov, Farit A.
Rizvanov, Albert A.
Gabibov, Alexander
Belogurov, Alexey
author_facet Ivanova, Vilena V.
Khaiboullina, Svetlana F.
Gomzikova, Marina O.
Martynova, Ekaterina V.
Ferreira, André M.
Garanina, Ekaterina E.
Sakhapov, Damir I.
Lomakin, Yakov A.
Khaibullin, Timur I.
Granatov, Evgenii V.
Khabirov, Farit A.
Rizvanov, Albert A.
Gabibov, Alexander
Belogurov, Alexey
author_sort Ivanova, Vilena V.
collection PubMed
description Multiple sclerosis (MS) is an autoimmune disease characterized by demyelination and consequent neuron injury. Although the pathogenesis of MS is largely unknown, a breach in immune self-tolerance to myelin followed by development of autoreactive encephalitogenic T cells is suggested to play the central role. The myelin basic protein (MBP) is believed to be one of the main targets for autoreactive lymphocytes. Recently, immunodominant MBP peptides encapsulated into the mannosylated liposomes, referred as Xemys, were shown to suppress development of experimental autoimmune encephalomyelitis, a rodent model of MS, and furthermore passed the initial stage of clinical trials. Here, we investigated the role of individual polypeptide components [MBP peptides 46–62 (GH17), 124–139 (GK16), and 147–170 (QR24)] of this liposomal peptide therapeutic in cytokine release and activation of immune cells from MS patients and healthy donors. The overall effects were assessed using peripheral blood mononuclear cells (PBMCs), whereas alterations in antigen-presenting capacities were studied utilizing plasmacytoid dendritic cells (pDCs). Among three MBP-immunodominant peptides, QR24 and GK16 activated leukocytes, while GH17 was characterized by an immunosuppressive effect. Peptides QR24 and GK16 upregulated CD4 over CD8 T cells and induced proliferation of CD25(+) cells, whereas GH17 decreased the CD4/CD8 T cell ratio and had limited effects on CD25(+) T cells. Accordingly, components of liposomal peptide therapeutic differed in upregulation of cytokines upon addition to PBMCs and pDCs. Peptide QR24 was evidently more effective in upregulation of pro-inflammatory cytokines, whereas GH17 significantly increased production of IL-10 through treated cells. Altogether, these data suggest a complexity of action of the liposomal peptide therapeutic that does not seem to involve simple helper T cells (Th)-shift but rather the rebalancing of the immune system.
format Online
Article
Text
id pubmed-5650689
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-56506892017-10-30 Divergent Immunomodulation Capacity of Individual Myelin Peptides—Components of Liposomal Therapeutic against Multiple Sclerosis Ivanova, Vilena V. Khaiboullina, Svetlana F. Gomzikova, Marina O. Martynova, Ekaterina V. Ferreira, André M. Garanina, Ekaterina E. Sakhapov, Damir I. Lomakin, Yakov A. Khaibullin, Timur I. Granatov, Evgenii V. Khabirov, Farit A. Rizvanov, Albert A. Gabibov, Alexander Belogurov, Alexey Front Immunol Immunology Multiple sclerosis (MS) is an autoimmune disease characterized by demyelination and consequent neuron injury. Although the pathogenesis of MS is largely unknown, a breach in immune self-tolerance to myelin followed by development of autoreactive encephalitogenic T cells is suggested to play the central role. The myelin basic protein (MBP) is believed to be one of the main targets for autoreactive lymphocytes. Recently, immunodominant MBP peptides encapsulated into the mannosylated liposomes, referred as Xemys, were shown to suppress development of experimental autoimmune encephalomyelitis, a rodent model of MS, and furthermore passed the initial stage of clinical trials. Here, we investigated the role of individual polypeptide components [MBP peptides 46–62 (GH17), 124–139 (GK16), and 147–170 (QR24)] of this liposomal peptide therapeutic in cytokine release and activation of immune cells from MS patients and healthy donors. The overall effects were assessed using peripheral blood mononuclear cells (PBMCs), whereas alterations in antigen-presenting capacities were studied utilizing plasmacytoid dendritic cells (pDCs). Among three MBP-immunodominant peptides, QR24 and GK16 activated leukocytes, while GH17 was characterized by an immunosuppressive effect. Peptides QR24 and GK16 upregulated CD4 over CD8 T cells and induced proliferation of CD25(+) cells, whereas GH17 decreased the CD4/CD8 T cell ratio and had limited effects on CD25(+) T cells. Accordingly, components of liposomal peptide therapeutic differed in upregulation of cytokines upon addition to PBMCs and pDCs. Peptide QR24 was evidently more effective in upregulation of pro-inflammatory cytokines, whereas GH17 significantly increased production of IL-10 through treated cells. Altogether, these data suggest a complexity of action of the liposomal peptide therapeutic that does not seem to involve simple helper T cells (Th)-shift but rather the rebalancing of the immune system. Frontiers Media S.A. 2017-10-16 /pmc/articles/PMC5650689/ /pubmed/29085375 http://dx.doi.org/10.3389/fimmu.2017.01335 Text en Copyright © 2017 Ivanova, Khaiboullina, Gomzikova, Martynova, Ferreira, Garanina, Sakhapov, Lomakin, Khaibullin, Granatov, Khabirov, Rizvanov, Gabibov and Belogurov. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Immunology
Ivanova, Vilena V.
Khaiboullina, Svetlana F.
Gomzikova, Marina O.
Martynova, Ekaterina V.
Ferreira, André M.
Garanina, Ekaterina E.
Sakhapov, Damir I.
Lomakin, Yakov A.
Khaibullin, Timur I.
Granatov, Evgenii V.
Khabirov, Farit A.
Rizvanov, Albert A.
Gabibov, Alexander
Belogurov, Alexey
Divergent Immunomodulation Capacity of Individual Myelin Peptides—Components of Liposomal Therapeutic against Multiple Sclerosis
title Divergent Immunomodulation Capacity of Individual Myelin Peptides—Components of Liposomal Therapeutic against Multiple Sclerosis
title_full Divergent Immunomodulation Capacity of Individual Myelin Peptides—Components of Liposomal Therapeutic against Multiple Sclerosis
title_fullStr Divergent Immunomodulation Capacity of Individual Myelin Peptides—Components of Liposomal Therapeutic against Multiple Sclerosis
title_full_unstemmed Divergent Immunomodulation Capacity of Individual Myelin Peptides—Components of Liposomal Therapeutic against Multiple Sclerosis
title_short Divergent Immunomodulation Capacity of Individual Myelin Peptides—Components of Liposomal Therapeutic against Multiple Sclerosis
title_sort divergent immunomodulation capacity of individual myelin peptides—components of liposomal therapeutic against multiple sclerosis
topic Immunology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5650689/
https://www.ncbi.nlm.nih.gov/pubmed/29085375
http://dx.doi.org/10.3389/fimmu.2017.01335
work_keys_str_mv AT ivanovavilenav divergentimmunomodulationcapacityofindividualmyelinpeptidescomponentsofliposomaltherapeuticagainstmultiplesclerosis
AT khaiboullinasvetlanaf divergentimmunomodulationcapacityofindividualmyelinpeptidescomponentsofliposomaltherapeuticagainstmultiplesclerosis
AT gomzikovamarinao divergentimmunomodulationcapacityofindividualmyelinpeptidescomponentsofliposomaltherapeuticagainstmultiplesclerosis
AT martynovaekaterinav divergentimmunomodulationcapacityofindividualmyelinpeptidescomponentsofliposomaltherapeuticagainstmultiplesclerosis
AT ferreiraandrem divergentimmunomodulationcapacityofindividualmyelinpeptidescomponentsofliposomaltherapeuticagainstmultiplesclerosis
AT garaninaekaterinae divergentimmunomodulationcapacityofindividualmyelinpeptidescomponentsofliposomaltherapeuticagainstmultiplesclerosis
AT sakhapovdamiri divergentimmunomodulationcapacityofindividualmyelinpeptidescomponentsofliposomaltherapeuticagainstmultiplesclerosis
AT lomakinyakova divergentimmunomodulationcapacityofindividualmyelinpeptidescomponentsofliposomaltherapeuticagainstmultiplesclerosis
AT khaibullintimuri divergentimmunomodulationcapacityofindividualmyelinpeptidescomponentsofliposomaltherapeuticagainstmultiplesclerosis
AT granatovevgeniiv divergentimmunomodulationcapacityofindividualmyelinpeptidescomponentsofliposomaltherapeuticagainstmultiplesclerosis
AT khabirovfarita divergentimmunomodulationcapacityofindividualmyelinpeptidescomponentsofliposomaltherapeuticagainstmultiplesclerosis
AT rizvanovalberta divergentimmunomodulationcapacityofindividualmyelinpeptidescomponentsofliposomaltherapeuticagainstmultiplesclerosis
AT gabibovalexander divergentimmunomodulationcapacityofindividualmyelinpeptidescomponentsofliposomaltherapeuticagainstmultiplesclerosis
AT belogurovalexey divergentimmunomodulationcapacityofindividualmyelinpeptidescomponentsofliposomaltherapeuticagainstmultiplesclerosis