Cargando…
Identification of New Virulence Factors and Vaccine Candidates for Yersinia pestis
Earlier, we reported the identification of new virulence factors/mechanisms of Yersinia pestis using an in vivo signature-tagged mutagenesis (STM) screening approach. From this screen, the role of rbsA, which encodes an ATP-binding protein of ribose transport system, and vasK, an essential component...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5650977/ https://www.ncbi.nlm.nih.gov/pubmed/29090192 http://dx.doi.org/10.3389/fcimb.2017.00448 |
_version_ | 1783272801454522368 |
---|---|
author | Andersson, Jourdan A. Sha, Jian Erova, Tatiana E. Fitts, Eric C. Ponnusamy, Duraisamy Kozlova, Elena V. Kirtley, Michelle L. Chopra, Ashok K. |
author_facet | Andersson, Jourdan A. Sha, Jian Erova, Tatiana E. Fitts, Eric C. Ponnusamy, Duraisamy Kozlova, Elena V. Kirtley, Michelle L. Chopra, Ashok K. |
author_sort | Andersson, Jourdan A. |
collection | PubMed |
description | Earlier, we reported the identification of new virulence factors/mechanisms of Yersinia pestis using an in vivo signature-tagged mutagenesis (STM) screening approach. From this screen, the role of rbsA, which encodes an ATP-binding protein of ribose transport system, and vasK, an essential component of the type VI secretion system (T6SS), were evaluated in mouse models of plague and confirmed to be important during Y. pestis infection. However, many of the identified genes from the screen remained uncharacterized. In this study, in-frame deletion mutants of ypo0815, ypo2884, ypo3614-3168 (cyoABCDE), and ypo1119-1120, identified from the STM screen, were generated. While ypo0815 codes for a general secretion pathway protein E (GspE) of the T2SS, the ypo2884-encoded protein has homology to the βγ crystallin superfamily, cyoABCDE codes for the cytochrome o oxidase operon, and the ypo1119-1120 genes are within the Tol-Pal system which has multiple functions. Additionally, as our STM screen identified three T6SS-associated genes, and, based on in silico analysis, six T6SS clusters and multiple homologs of the T6SS effector hemolysin-coregulated protein (Hcp) exist in Y. pestis CO92, we also targeted these T6SS clusters and effectors for generating deletion mutants. These deletion mutant strains exhibited varying levels of attenuation (up to 100%), in bubonic or pneumonic murine infection models. The attenuation could be further augmented by generation of combinatorial deletion mutants, namely ΔlppΔypo0815, ΔlppΔypo2884, ΔlppΔcyoABCDE, ΔvasKΔhcp6, and Δypo2720-2733Δhcp3. We earlier showed that deletion of the lpp gene, which encodes Braun lipoprotein (Lpp) and activates Toll-like receptor-2, reduced virulence of Y. pestis CO92 in murine models of bubonic and pneumonic plague. The surviving mice infected with ΔlppΔcyoABCDE, ΔvasKΔhcp6, and Δypo2720-2733Δhcp3 mutant strains were 55–100% protected upon subsequent re-challenge with wild-type CO92 in a pneumonic model. Further, evaluation of the attenuated T6SS mutant strains in vitro revealed significant alterations in phagocytosis, intracellular survival in murine macrophages, and their ability to induce cytotoxic effects on macrophages. The results reported here provide further evidence of the utility of the STM screening approach for the identification of novel virulence factors and to possibly target such genes for the development of novel live-attenuated vaccine candidates for plague. |
format | Online Article Text |
id | pubmed-5650977 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-56509772017-10-31 Identification of New Virulence Factors and Vaccine Candidates for Yersinia pestis Andersson, Jourdan A. Sha, Jian Erova, Tatiana E. Fitts, Eric C. Ponnusamy, Duraisamy Kozlova, Elena V. Kirtley, Michelle L. Chopra, Ashok K. Front Cell Infect Microbiol Microbiology Earlier, we reported the identification of new virulence factors/mechanisms of Yersinia pestis using an in vivo signature-tagged mutagenesis (STM) screening approach. From this screen, the role of rbsA, which encodes an ATP-binding protein of ribose transport system, and vasK, an essential component of the type VI secretion system (T6SS), were evaluated in mouse models of plague and confirmed to be important during Y. pestis infection. However, many of the identified genes from the screen remained uncharacterized. In this study, in-frame deletion mutants of ypo0815, ypo2884, ypo3614-3168 (cyoABCDE), and ypo1119-1120, identified from the STM screen, were generated. While ypo0815 codes for a general secretion pathway protein E (GspE) of the T2SS, the ypo2884-encoded protein has homology to the βγ crystallin superfamily, cyoABCDE codes for the cytochrome o oxidase operon, and the ypo1119-1120 genes are within the Tol-Pal system which has multiple functions. Additionally, as our STM screen identified three T6SS-associated genes, and, based on in silico analysis, six T6SS clusters and multiple homologs of the T6SS effector hemolysin-coregulated protein (Hcp) exist in Y. pestis CO92, we also targeted these T6SS clusters and effectors for generating deletion mutants. These deletion mutant strains exhibited varying levels of attenuation (up to 100%), in bubonic or pneumonic murine infection models. The attenuation could be further augmented by generation of combinatorial deletion mutants, namely ΔlppΔypo0815, ΔlppΔypo2884, ΔlppΔcyoABCDE, ΔvasKΔhcp6, and Δypo2720-2733Δhcp3. We earlier showed that deletion of the lpp gene, which encodes Braun lipoprotein (Lpp) and activates Toll-like receptor-2, reduced virulence of Y. pestis CO92 in murine models of bubonic and pneumonic plague. The surviving mice infected with ΔlppΔcyoABCDE, ΔvasKΔhcp6, and Δypo2720-2733Δhcp3 mutant strains were 55–100% protected upon subsequent re-challenge with wild-type CO92 in a pneumonic model. Further, evaluation of the attenuated T6SS mutant strains in vitro revealed significant alterations in phagocytosis, intracellular survival in murine macrophages, and their ability to induce cytotoxic effects on macrophages. The results reported here provide further evidence of the utility of the STM screening approach for the identification of novel virulence factors and to possibly target such genes for the development of novel live-attenuated vaccine candidates for plague. Frontiers Media S.A. 2017-10-17 /pmc/articles/PMC5650977/ /pubmed/29090192 http://dx.doi.org/10.3389/fcimb.2017.00448 Text en Copyright © 2017 Andersson, Sha, Erova, Fitts, Ponnusamy, Kozlova, Kirtley and Chopra. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Andersson, Jourdan A. Sha, Jian Erova, Tatiana E. Fitts, Eric C. Ponnusamy, Duraisamy Kozlova, Elena V. Kirtley, Michelle L. Chopra, Ashok K. Identification of New Virulence Factors and Vaccine Candidates for Yersinia pestis |
title | Identification of New Virulence Factors and Vaccine Candidates for Yersinia pestis |
title_full | Identification of New Virulence Factors and Vaccine Candidates for Yersinia pestis |
title_fullStr | Identification of New Virulence Factors and Vaccine Candidates for Yersinia pestis |
title_full_unstemmed | Identification of New Virulence Factors and Vaccine Candidates for Yersinia pestis |
title_short | Identification of New Virulence Factors and Vaccine Candidates for Yersinia pestis |
title_sort | identification of new virulence factors and vaccine candidates for yersinia pestis |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5650977/ https://www.ncbi.nlm.nih.gov/pubmed/29090192 http://dx.doi.org/10.3389/fcimb.2017.00448 |
work_keys_str_mv | AT anderssonjourdana identificationofnewvirulencefactorsandvaccinecandidatesforyersiniapestis AT shajian identificationofnewvirulencefactorsandvaccinecandidatesforyersiniapestis AT erovatatianae identificationofnewvirulencefactorsandvaccinecandidatesforyersiniapestis AT fittsericc identificationofnewvirulencefactorsandvaccinecandidatesforyersiniapestis AT ponnusamyduraisamy identificationofnewvirulencefactorsandvaccinecandidatesforyersiniapestis AT kozlovaelenav identificationofnewvirulencefactorsandvaccinecandidatesforyersiniapestis AT kirtleymichellel identificationofnewvirulencefactorsandvaccinecandidatesforyersiniapestis AT chopraashokk identificationofnewvirulencefactorsandvaccinecandidatesforyersiniapestis |