Cargando…
Resting State fMRI Functional Connectivity-Based Classification Using a Convolutional Neural Network Architecture
Machine learning techniques have become increasingly popular in the field of resting state fMRI (functional magnetic resonance imaging) network based classification. However, the application of convolutional networks has been proposed only very recently and has remained largely unexplored. In this p...
Autores principales: | Meszlényi, Regina J., Buza, Krisztian, Vidnyánszky, Zoltán |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5651030/ https://www.ncbi.nlm.nih.gov/pubmed/29089883 http://dx.doi.org/10.3389/fninf.2017.00061 |
Ejemplares similares
-
Resting State fMRI Functional Connectivity Analysis Using Dynamic Time Warping
por: Meszlényi, Regina J., et al.
Publicado: (2017) -
Transfer learning improves resting-state functional connectivity pattern analysis using convolutional neural networks
por: Vakli, Pál, et al.
Publicado: (2018) -
Predicting Body Mass Index From Structural MRI Brain Images Using a Deep Convolutional Neural Network
por: Vakli, Pál, et al.
Publicado: (2020) -
Network Connectivity in Epilepsy: Resting State fMRI and EEG–fMRI Contributions
por: Centeno, Maria, et al.
Publicado: (2014) -
Investigating the Group-Level Impact of Advanced Dual-Echo fMRI Combinations
por: Kettinger, Ádám, et al.
Publicado: (2016)