Cargando…

Leveraging Multiactions to Improve Medical Personalized Ranking for Collaborative Filtering

Nowadays, providing high-quality recommendation services to users is an essential component in web applications, including shopping, making friends, and healthcare. This can be regarded either as a problem of estimating users' preference by exploiting explicit feedbacks (numerical ratings), or...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Shan, Guo, Guibing, Li, Runzhi, Wang, Zongmin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5651144/
https://www.ncbi.nlm.nih.gov/pubmed/29118963
http://dx.doi.org/10.1155/2017/5967302
Descripción
Sumario:Nowadays, providing high-quality recommendation services to users is an essential component in web applications, including shopping, making friends, and healthcare. This can be regarded either as a problem of estimating users' preference by exploiting explicit feedbacks (numerical ratings), or as a problem of collaborative ranking with implicit feedback (e.g., purchases, views, and clicks). Previous works for solving this issue include pointwise regression methods and pairwise ranking methods. The emerging healthcare websites and online medical databases impose a new challenge for medical service recommendation. In this paper, we develop a model, MBPR (Medical Bayesian Personalized Ranking over multiple users' actions), based on the simple observation that users tend to assign higher ranks to some kind of healthcare services that are meanwhile preferred in users' other actions. Experimental results on the real-world datasets demonstrate that MBPR achieves more accurate recommendations than several state-of-the-art methods and shows its generality and scalability via experiments on the datasets from one mobile shopping app.