Cargando…
Leveraging Multiactions to Improve Medical Personalized Ranking for Collaborative Filtering
Nowadays, providing high-quality recommendation services to users is an essential component in web applications, including shopping, making friends, and healthcare. This can be regarded either as a problem of estimating users' preference by exploiting explicit feedbacks (numerical ratings), or...
Autores principales: | Gao, Shan, Guo, Guibing, Li, Runzhi, Wang, Zongmin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5651144/ https://www.ncbi.nlm.nih.gov/pubmed/29118963 http://dx.doi.org/10.1155/2017/5967302 |
Ejemplares similares
-
Application of Principal Component Analysis (PCA) to the Evaluation and Screening of Multiactivity Fungi
por: Yang, Zonglin, et al.
Publicado: (2022) -
RetroRanker: leveraging reaction changes to improve retrosynthesis prediction through re-ranking
por: Li, Junren, et al.
Publicado: (2023) -
Collaboratively leveraging our potential
por: West, Andrew
Publicado: (2017) -
An improved collaborative filtering method based on similarity
por: Feng, Junmei, et al.
Publicado: (2018) -
A Rank-Ordered Marginal Filter for Deinterlacing
por: Jeon, Gwanggil, et al.
Publicado: (2013)