Cargando…
Nonintrusive Load Monitoring Based on Advanced Deep Learning and Novel Signature
Monitoring electricity consumption in the home is an important way to help reduce energy usage. Nonintrusive Load Monitoring (NILM) is existing technique which helps us monitor electricity consumption effectively and costly. NILM is a promising approach to obtain estimates of the electrical power co...
Autores principales: | Kim, Jihyun, Le, Thi-Thu-Huong, Kim, Howon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5651160/ https://www.ncbi.nlm.nih.gov/pubmed/29118809 http://dx.doi.org/10.1155/2017/4216281 |
Ejemplares similares
-
Corrigendum to “Nonintrusive Load Monitoring Based on Advanced Deep Learning and Novel Signature”
por: Kim, Jihyun, et al.
Publicado: (2018) -
Background Load Denoising across Complex Load Based on Generative Adversarial Network to Enhance Load Identification
por: Mukaroh, Afifatul, et al.
Publicado: (2020) -
Semi-Supervised Domain Adaptation for Multi-Label Classification on Nonintrusive Load Monitoring
por: Hur, Cheong-Hwan, et al.
Publicado: (2022) -
A Field Study of Nonintrusive Load Monitoring Devices and Implications for Load Disaggregation
por: Mayhorn, Ebony, et al.
Publicado: (2023) -
Explainability-Informed Feature Selection and Performance Prediction for Nonintrusive Load Monitoring †
por: Mollel, Rachel Stephen, et al.
Publicado: (2023)